Skip to main content
Log in

High-performance aromatic polyimide fibres

Part V Compressive properties of BPDA-DMB fibre

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new polyimide has been synthesized from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 2,2′-dimethyl-4,4′-diaminobiphenyl (DMB). A high-strength, high-modulus, high-temperature fibre has been developed from this polyimide via a dry-jet wet spinning method. The tensile strength of BPDA-DMB fibres is 3.3 GPa and the tensile modulus is around 130 GPa. The compressive strength of the fibres has been investigated through a tensile recoil test (TRT), while the fibre morphology after compression has been studied via polarized light microscopy (PLM) and scanning electron microscopy (SEM). From the TRT measurements, we have observed that the compressive strength of this fibre is 665 (±5) MPa, which is higher than those of other aromatic polymer fibres. The effect of fibre diameter on the compressive strength of BPDA-DMB fibres is not substantial. The critical compressive strain for this fibre at which the kink bands start appearing under the observation of PLM is at 0.51–0.54%. Subglass relaxation processes have been observed and the measure of an apparent relaxation strength may serve as one of the factors which significantly affect the compressive strength of the fibres. Tensile tests of pre-compressed fibres reveal a continuous loss in tensile strength (up to 30%) with increasing the compressive strain (up to 2.6%). PLM and SEM observations show that during the compression BPDA-DMB fibres form regularly-spaced kink bands at ±60 ° (±2 °) with respect to the fibre axis. The kink band density initially increases with the compressive strain, and reaches a maximum at around 1.1%. Further increase of the compressive strain decreases this density due to the merge of the neighbouring bands. The size of kink bands also correspondingly increases within this compressive strain region. The morphological observation via SEM implies the existence of a skin-core structure and microfibrillar texture which are common features in polymer fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kumar and T. E. Helminiak, in “The Materials Science and Engineering of Rigid-Rod Polymers”, Materials Research Society Symposium Proceeding, edited by W. W. Adams, R. K. Eby and D. E. McLemore, Vol. 134 (1989) pp. 363–374.

  2. M. G. Dobb, D. J. Johnson and B. P. Saville, Polymer 22 (1981) 960.

    Article  CAS  Google Scholar 

  3. J. M. Greenwood and P. G. Rose, J. Mater. Sci. 9 (1974) 1809.

    Article  CAS  Google Scholar 

  4. S. Z. D. Cheng, Z. Wu, M. Eashoo, S. Hsu and F. W. Harris, Polymer 32 (1991) 1803.

    Article  CAS  Google Scholar 

  5. M. Eashoo, Z. Wu, D. Shen, S. Hsu, C. J. Lee, F. W. Harris and S. Z. D. Cheng, ibid. 34 (1993) 3209.

    Article  CAS  Google Scholar 

  6. M. Eashoo, D. Shen, Z. Wu, C. Wu, F. W. Harris, S. Z. D. Cheng, K. Gardner and B. S. Hsiao, Macromol. Chem. Phys. 195 (1994) 2207.

    Article  CAS  Google Scholar 

  7. D. Shen, Z. Wu, S. Lee, F. W. Harris, S. Z. D. Cheng, J. Blackwell, T. Wu and S. Chvalun, Polymers and Polymer Composites (in press).

  8. S. J. Deteresa, R. J. Farris and R. S. Porter, Polym. Comps. 3 (1982) 57.

    Article  CAS  Google Scholar 

  9. S. J. Deteresa, S. R. Allen, R. J. Farris and R. S. Porter, J. Mater. Sci. 19 (1984) 57.

    Article  CAS  Google Scholar 

  10. S. J. Deteresa, R. S. Porter and R. J. Farris, ibid. 23 (1988) 1886.

    Article  CAS  Google Scholar 

  11. D. Sinclair, J. Appl. Phys. 21 (1950) 380.

    Article  Google Scholar 

  12. L. T. Drzal, AFWAL-TR-86-4003.

  13. S. R. Allen, J. Mater. Sci. 22 (1987) 853.

    Article  CAS  Google Scholar 

  14. S. A. Fawaz, A. N. Palazotto and C. S. Wang, Polymer 33 (1992) 100.

    Article  CAS  Google Scholar 

  15. K. S. Macturk, R. K. Eby and W. W. Adams, ibid. 32 (1991) 1782.

    Article  CAS  Google Scholar 

  16. C. S. Wang, S. J. Bai and B. P. Rice, in Proceedings of Polymeric Materials Science and Engineering, (ACS, Washington D.C. 1989) 61 550.

  17. H. H. Young, “Aromatic High Strength Fibres”, (Wiley & Sons, New York, 1989) p. 758.

    Google Scholar 

  18. Unpublished work.

  19. I. M. Word, “Mechanical Properties in Polymers”, (Wiley Interscience, New York, 1971) Ch. 5.

    Google Scholar 

  20. S. Van Der Zwaag and G. Kampschoer, in “Integration of Fundamental Polymer Science and Technology”, 2nd edn. (Elsevier, London, 1988) Ch. 2, p. 545.

    Book  Google Scholar 

  21. S. Van Der Zwaag, S. J. Picken and C. P. Van Sluijs, in “Integration of Fundamental Polymer Science and Technology”, 2nd edn. (Elsevier, London, 1989) Vol. 3, p. 199.

    Book  Google Scholar 

  22. W. Huh, S. Kumar, T. E. Helminiak and W. W. Adams, SPE Annual Tech. Conf. Proc. (1990) 1245.

  23. D. C. Martin and E. L. Thomas, in Pre-print of 8th International Conference of Deformation, Yield and Fracture of Polymers, Churchill College, Cambridge, UK.

  24. D. C. Martin, Ph.D dissertation, Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 1990.

    Google Scholar 

  25. D. C. Martin and E. L. Thomas, J. Mater. Sci. 26 (1991) 5171.

    Article  CAS  Google Scholar 

  26. Idem. Macromolecules 24 (1991) 2224.

    Google Scholar 

  27. M. Eashoo, Ph.D. dissertation, Department of Polymer Science, University of Akron, Akron, OH, 1994.

    Google Scholar 

  28. S. J. Deteresa, R. S. Porter and R. J. Farris, J. Mater. Sci. 20 (1985) 1645.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Wu, Z., Jiang, H. et al. High-performance aromatic polyimide fibres. JOURNAL OF MATERIALS SCIENCE 31, 4423–4431 (1996). https://doi.org/10.1007/BF00356470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356470

Keywords

Navigation