Skip to main content
Log in

Synthesis of amorphous and metastable Ti40Al60 alloys by mechanical alloying of elemental powders

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ti40Al60 amorphous and metastable alloys have been prepared by mechanical alloying (MA), under controlled milling conditions in a planetary mill. Three different quantities of kinetic energy at the collision instant have been achieved by using balls of different size, φb = 5, 8 and 12 mm, keeping constant all other device parameters. Assuming the collision between the balls and the vial walls to be inelastic, during the early stage of alloying, the amount of energy transferred to the trapped powder could be estimated. The experimental results show that the milling with balls of diameter φb = 5 or 8 mm leads to a solid-state amorphization of the Ti40Al60 mixture, through the attainment of a supersaturated solid solution of aluminium into α-titanium. Otherwise, the milling causes the nucleation of the A1-fcc disordered form of the TiAl intermetallic compound. The end products of MA-induced solid-state reaction (SSR) have been ascribed to the different temperature reached by the powder during each collision and to the reaction time scale for the formation of the amorphous phase, δt a, and for the nucleation of the non-equilibrium intermetallic compound, δt d. Differential scanning calorimetry has indicated that the crystallization of amorphous samples follows a two-step reaction. At a temperature T c≈400 °C, the amorphous phase crystallizes into the A1 -fcc. TiAl phase having a measured heat of crystallization of 6.2 kJ(g at)−1. Upon further heating, the system undergoes A1 → L1o reordering transition with an enthalpy release of about 3.2 kJ (g at)−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana, F. H. Froes and R. G. Rowe, Int. Mater. Rev. 36 (1991) 85.

    Article  CAS  Google Scholar 

  2. D. Vujic, Z. Li and S. H. Whang, Metall. Trans. 19A (1988) 2445.

    Article  CAS  Google Scholar 

  3. C. C. Koch, Mater. Sci. Technol. 15 (1991) 194.

    Google Scholar 

  4. W. Guo, S. Martelli, N. Burgio, M. Magini, F. Padella, E. Paradiso and I. Soletta, J. Mater. Sci. 26 (1990) 6190.

    Article  Google Scholar 

  5. L. Schultz, Mater. Sci. Eng. 97 (1988) 15.

    Article  CAS  Google Scholar 

  6. G. Cocco, I. Soletta, L. Battezzati, M. Barricco and S. Enzo, Philos. Mag. B61 (1990) 473.

    Article  Google Scholar 

  7. N. Burgio, A. Iasonna, M. Magini, S. Martelli and F. Padella, Nuovo Cimento 13D (1991) 459.

    Article  CAS  Google Scholar 

  8. F. Padella, E. Paradiso, N. Burgio, M. Magini, S. Martelli, W. Guo and A. Iasonna, J. Less-Common Metals 175 (1991) 79.

    Article  CAS  Google Scholar 

  9. W. Guo, S. Martelli, F. Padella, M. Magini, N. Burgio, E. Paradiso and U. Franzoni, Mater. Sci. Forum 88–90 (1991) 139.

    Google Scholar 

  10. U. Mizutani and C. H. Lee, J. Mater. Sci. 25 (1990) 399.

    Article  CAS  Google Scholar 

  11. A. Calka, Appl. Phys. Lett. 59 (1991) 1568.

    Article  CAS  Google Scholar 

  12. D. W. Marquart, J. Soc. Ind. Appl. Math. 91 (1963) 431.

    Article  Google Scholar 

  13. A. Guinier, “Théorie et Technique de la Radiocristallographie” (Dunod, Paris, 1964).

    Google Scholar 

  14. T. B. Massalsky, “Binary Phase Diagrams” (ASM, 1986).

  15. “Phase Diagrams of Titanium Alloys” S. G. Glazunov (ed.), Israel Program for Scientific Translation (1965).

  16. W. B. Pearson, “Handbook of Lattice Spacings and structure of Metals” (Pergamon Press, Oxford, 1967).

    Google Scholar 

  17. T. Tanamura, T. Sugai and M. Tanino, J. Mater. Sci. 25 (1990) 27.

    Google Scholar 

  18. H. Barker and L. M. Di, Mater. Sci. Forum 88–90 (1992) 27.

    Google Scholar 

  19. J. Eckert, L. Schultz and K. Urban, J. Non-Cryst Solids 130 (1991) 273.

    Article  CAS  Google Scholar 

  20. M. Magini, Mater. Sci. Forum 88–90 (1992) 121.

    Article  Google Scholar 

  21. D. R. Maurice and T. H. Courtney, Metall. Trans. 21A (1990) 289.

    Article  CAS  Google Scholar 

  22. S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity” (McGraw-Hill, New York, 1970).

    Google Scholar 

  23. A. R. Yavary and P. J. Desré, Phys. Rev. Lett. 65 (1990) 2571.

    Article  Google Scholar 

  24. G. Mazzone, A. Montone and M. Vittori-Antisari, ibid. 65 (1990) 2019.

    Article  CAS  Google Scholar 

  25. U. Gösele and K. N. Tu, J. Appl. Phys. 66 (1989) 2619.

    Article  Google Scholar 

  26. “Handbook of Chemistry & Physics”, 47th Edn (1966–1967)

  27. L. Guttman, Solid State Phys. 3 (1956) 1.

    Article  Google Scholar 

  28. M. Asta, D. De Fontaine, M. Van Schilfgaarde, M. Sluiter and M. Methfessel, Phys. Rev. B46 (1992) 5055.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Iasonna, A., Magini, M. et al. Synthesis of amorphous and metastable Ti40Al60 alloys by mechanical alloying of elemental powders. JOURNAL OF MATERIALS SCIENCE 29, 2436–2444 (1994). https://doi.org/10.1007/BF00363438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363438

Keywords

Navigation