Skip to main content
Log in

A method of measuring energy dissipation during crack propagation in polymers with an instrumented ultramicrotome

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to characterize very local energy dissipation during crack propagation in polymers, an ultramicrotome was instrumented to measure the energy dissipated during sectioning. The work to section per unit area, W s, was measured for five different amorphous polymers [polymethyl methacrylate (PMMA), polystyerene (PS), polycarbonate (PC) and two epoxy resins] in the glassy state. When the section thickness was varied between 60 and 250 nm, W s varied between 15 and 100 Jm−2, depending on the material and section thickness. The method and the results are compared with other methods used for determining the energy dissipation at a local level as well as at a macroscopic level in polymers. The differences between different polymers were found to be contradictory to macroscopic fracture toughness, G lc, measurements. The material that showed the highest W s had the lowest G lc values reported. Possible mechanisms for energy dissipation during sectioning are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. KINLOCH and R. J. YOUNG, “Fracture Behaviour of Polymers” (Elsevier, London, 1988) p. 74.

    Google Scholar 

  2. N. E. KING and E. H. ANDREWS, J. Mater. Sci. 13 (1978) 1291.

    Article  CAS  Google Scholar 

  3. L. H. SPERLING, “Introduction to Physical Polymer Science”, 2nd Edn (Wiley, Toronto, 1992) p. 544.

    Google Scholar 

  4. J. BRANDRUP and E. H. IMMERGUT, “Polymer Handbook”, 3rd Edn (Wiley, New York, 1989) pp. V78, V83, VI414–432.

    Google Scholar 

  5. H. H. KAUSCH, “Polymer Fracture” (Springer-Verlag, Berlin, 1987) p. 273.

    Google Scholar 

  6. D. C. PHILLIPS, J. M. SCOTT and M. JONES, J. Mater. Sci. 13 (1978) 311.

    Article  CAS  Google Scholar 

  7. G. B. MCKENNA, J. M. CRISSMAN and A. LEE, Polym. Prepr. 29 (1988) 128.

    CAS  Google Scholar 

  8. H. F. MARK, N. M. BIKALES, C. G. OVERBERGER and G. MENGES (Eds), “Encylopedia of Polymer Science and Engineering” (Wiley, New York, 1987) p. 7.372.

    Google Scholar 

  9. L. ASP, L. A. BERGLUND and P. GUDMUNDSON, Compos. Sci. Technol. submitted.

  10. R. J. MORGAN, F.-M. KONG and C. M. WALKUP, Polymer 25 (1984) 375.

    Article  CAS  Google Scholar 

  11. G. J. LAKE and P. B. LINDLEY, J. Appl. Polym. Sci. 9 (1965) 1233.

    Article  Google Scholar 

  12. R. J. MORGAN and J. E. O'NEAL, Polym.-Plast. Technol. Eng. 10 (1978) 49.

    Article  CAS  Google Scholar 

  13. R. P. WOOL and A. T. ROCKHILL, J. Macromol. Sci.-Phys. B20 (1981) 85.

    Article  CAS  Google Scholar 

  14. K. A. MAZICH, M. A. SAMUS, C. A. SMITH and G. ROSSI, Macromol. 24 (1991) 2766.

    Article  CAS  Google Scholar 

  15. A. G. ATKINS and J. F. V. VINCENT, J. Mater. Sci. Lett. 3 (1984) 310.

    Article  Google Scholar 

  16. N. MOHAMMADI, R. BAGHERI, G. A. MILLER, A. KLEIN and L. H. SPERLNG, Polym. Testing 12 (1993) 65.

    Article  CAS  Google Scholar 

  17. P. FORDYCE, B. M. FANCONI and K. L. DEVRIES, Polym. Eng. Sci. 24 (1984) 421.

    Article  CAS  Google Scholar 

  18. A. C.-M. YANG, C. K. LEE and S. L. FERLINE, J. Polym. Sci. Polym. Phys. Ed. 30 (1992) 1123.

    Article  CAS  Google Scholar 

  19. G. J. LAKE and A. G. THOMAS, Proc. R. Soc. Lond. A300 (1967) 108.

    Google Scholar 

  20. J. F. V. VINCENT, Europ. Microsc. Anal. May (1991) 13.

  21. R. T. ALLISON and J. F. V. VINCENT, J. Microsc. 159 (1990) 203.

    Article  CAS  Google Scholar 

  22. B. J. DOBRASZCZYK, A. G. ATKINS, G. JERONIMIDIS and P. P. PURSLOW, Meat Sci. 21 (1987) 25.

    Article  Google Scholar 

  23. S. HODSON and J. MARSHALL, J. Microsc. 95 (1972) 459.

    Article  Google Scholar 

  24. A. J. SAUBERMANN, W. D. RILEY and R. BEEUWKES III, ibid. 111 (1977) 39.

    Article  CAS  Google Scholar 

  25. P. WIKEFELDT, PhD thesis, Chalmers Institute of Technology (1973) in Swedish.

  26. H. F. HELANDER, J. Microsc. 101 (1974) 81.

    Article  CAS  Google Scholar 

  27. J. L. WILLETT, K. M. O'CONNER and R. P. WOOOL, J. Polym. Sci., Polym. Phys. Ed. 24 (1986) 2583.

    Article  CAS  Google Scholar 

  28. W. J. PATZELT, “Polarisationsmikroskopie”, Grundlagen, Instrumente, Anwendungen. Ernst Leitz GMBH (1974).

  29. K. A. H. LINDBERG, PhD thesis 1987, Luleå University of Technology (1987).

  30. R. M. D. MESQUITA and M. J. M. BARATA MARQUES, J. Mater. Process. Technol. 33 (1992) 229.

    Article  Google Scholar 

  31. O. DOI and M. YOKOYAMA, Bull. JSME 18 (1975) 905.

    Article  Google Scholar 

  32. Idem. ibid. 21 (1978) 161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ericson, M.L., Lindberg, H. A method of measuring energy dissipation during crack propagation in polymers with an instrumented ultramicrotome. JOURNAL OF MATERIALS SCIENCE 31, 655–662 (1996). https://doi.org/10.1007/BF00367882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367882

Keywords

Navigation