Skip to main content
Log in

Effect of pH on 980 °C spinel phase-mullite formation of Al2O3-SiO2 gels

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Different reaction paths of mullite formation via sol-gel processing techniques are reviewed. These variations are due to differences in hydrolysis/gelation behaviours of the silica and alumina components used. Variations of pH during processing without altering other variables follow three different routes of mullite formation. In the highly acidic region(pH ⩽ 1), the gel does not exhibit a 980 °C exotherm but forms γ-Al2O3. Mullite forms at high temperature by diminution of α-Al2O3 and β-cristobalite, respectively. In the pH range of 3–4.5, gels exhibit a 980 °C exotherm and develop only mullite. In the highly alkaline region (pH ∼ 14), the gel produces a Si-Al spinel phase at the 980 °C exotherm and mullite formation at the ∼ 1330 °C exotherm takes place from the intermediate Si-Al spinel phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Aksay, D. M. Dabbs and M. Sarikaya, J. Amer. Ceram. Soc. 74 (1991) 2343.

    Article  CAS  Google Scholar 

  2. R. Roy, ibid.39 (1956) 145.

    Article  CAS  Google Scholar 

  3. T. A. Wheat, J. Can. Ceram. Soc. 46 (1977) 11.

    CAS  Google Scholar 

  4. K. S. Mazdiyasni, Ceram. Int. 8 (1982) 42.

    Article  CAS  Google Scholar 

  5. M. D. Sacks, H. W. Lee and J. A. Pask, in “Ceramic Transactions”, Vol. 6, “Mullite and Mullite Matrix Composites”, edited by S. Somiya, R. F. Davis and J. A. Pask (American Ceramic Society, Westerville, Ohio, 1990) p. 167.

    Google Scholar 

  6. K. Okada, N. Ôtsuka and S. Sômiya, Bull. Amer. Ceram. Soc. 70 (1991) 1633.

    CAS  Google Scholar 

  7. S. Somiya and Y. Hirata, ibid.70 (1991) 1624.

    CAS  Google Scholar 

  8. H. Insley and R. H. Ewell, J. Res. Natl. Bur. Stand (U.S.) 14 (1935) 615.

    Article  CAS  Google Scholar 

  9. C. H. Horte and J. Wiegmann, Naturwissens Chaften 43 (1956) 9.

    Article  CAS  Google Scholar 

  10. T. Demediwk and W. F. Cole, Nature 181 (1958) 1400.

    Article  Google Scholar 

  11. J. D. Croft and W. W. Marshall, Trans. Brit. Ceram. Soc. 66 (1967) 121.

    Google Scholar 

  12. T. D. McGee and C. D. Wirkus, J. Amer. Ceram. Soc. 51 (1972) 577.

    Google Scholar 

  13. S. Kaneko, N. Mazuka and S. Suzuki, in Abstracts of the Annual Meeting of the Ceramic Society of Japan, (Ceramic Society of Japan, Tokyo, Japan, 1990) Paper No. 2D07.

    Google Scholar 

  14. J. Grofesik and E. Vago, in “Mullite. Its structure, Formation and Significance”, edited by J. Grofesik and F. Tamas (Publishing House of the Hungarian Academy of Sciences, Budapest, Hungary, 1961) p. 96.

    Google Scholar 

  15. H. Yamada and S. Kimura, Yogyo Kyokai Shi 70 (1972) 63.

    Google Scholar 

  16. A. K. Chakravorty and D. K. Ghosh, J. Amer. Ceram. Soc. 71 (1988) 978.

    Article  CAS  Google Scholar 

  17. T. Hiraicoa, K. Miyazaki, T. Kawanami and H. Ohnishi, in Abstracts of the Annual Meeting of the Ceramic Society of Japan (Ceramic Society of Japan, Tokyo, Japan, 1986) Paper No. 2C03.

    Google Scholar 

  18. S. Rajendran, H. J. Rossell and J. V. Sanders, J. Mater. Sci. 25 (1990) 4462.

    Article  CAS  Google Scholar 

  19. K. S. Mazdiyasni and L. M. Brown, J. Amer. Ceram. Soc. 55 (1972) 548.

    Article  CAS  Google Scholar 

  20. S. Prochazka and F. J. Klug, ibid.66 (1983) 874.

    Article  CAS  Google Scholar 

  21. K. Hamano, Z. Nakagawa, G. Cun-Ji and T. Sato, in “Mullite”, edited by S. Somiya (Uchida Rokakuho Publishing Co., Tokyo, Japan, 1985) p. 37.

    Google Scholar 

  22. B. E. Yoldas and D. P. Partlow, J. Mater. Sci. 23 (1988) 1895.

    Article  CAS  Google Scholar 

  23. J. A. Pask, X. W. Zhang, A. P. Tomsia and B. E. Yoldas, J. Amer. Ceram. Soc. 70 (1987) 704.

    Article  CAS  Google Scholar 

  24. Y. Hirata, K. Sakeda, Y. Matsushita and K. Shimada, Yogyo-Kyokai-Shi 93 (1985) 101.

    Article  Google Scholar 

  25. S. Mitachi, M. Matsuzawa and K. Kaneko, S. Kanzaki and H. Tabata, in “Ceramic Transactions”, Vol. 6. “Mullite and Mullite Matrix Composites”, edited by S. Somiya, R. F. Davis and J. A. Pask (American Ceramic Society, Westerville, Ohio, 1990) p. 275.

    Google Scholar 

  26. H. Suzuki, H. Saito, Y. Tomokiyo and Y. Suyama, ibid.—in p. 263.

    Google Scholar 

  27. J. Sanz, I. Sobrados, L. Cavalieri, P. Pena, S. De Aza and J. S. Moya, J. Amer. Ceram. Soc. 74 (1991) 2398.

    Article  CAS  Google Scholar 

  28. A. K. Chakravorty, ibid.62 (1979) 120.

    Article  Google Scholar 

  29. D. W. Hoffman, R. Roy and S. Komarmeni, ibid.67 (1984) 468.

    Article  CAS  Google Scholar 

  30. K. Okada and N. Ôtsuka, ibid.69 (1986) 652.

    Article  CAS  Google Scholar 

  31. H. Schneider and L. M. A. Sebald, J. Mater. Sci. 27 (1992) 805.

    Article  CAS  Google Scholar 

  32. D. X. Li and W. J. Thomson, J. Mater. Res. 6 (1991) 819.

    Article  CAS  Google Scholar 

  33. L. A. Paulick, Y. F. Yu and T. I. Mah, in “Ceramic Powder Science, Advances in Ceramics” Vol. 21, edited by G. L. Messing, K. S. Mazdiyasne, J. W. McCauley and R. A. Haber (American Ceramics Society, Westerville, Ohio, 1987) p. 121.

    Google Scholar 

  34. M. Yamane, S. Inoue and A. Yasumori, J. Non-Cryst. Solids 63 (1984) 13.

    Article  CAS  Google Scholar 

  35. C. S. Hsi, H. Y. Lu and F. S. Yen, J. Amer. Ceram. Soc. 72 (1989) 2208.

    Article  CAS  Google Scholar 

  36. A. K. Chakravorty, J. Mater. Res. (submitted).

  37. R. C. Mackenzie (Ed.), in “Differential Thermal Analysis” Vol. 1 (Academic Press, London, 1970) p. 286.

    Google Scholar 

  38. H. R. Kruyt (ed) “Colloid Science” (Elsevier, New York, 1952) p. 26.

    Google Scholar 

  39. Y. Hirata, H. Minamizono and K. Shimada, Yogyo-Kyokai-Shi 93 (1985) 46.

    Article  Google Scholar 

  40. S. Komarneni, R. Roy, C. A. Fyfe and G. J. Kennedy, J. Amer. Ceram. Soc. 68 (1985) C-243.

    CAS  Google Scholar 

  41. P. C. Carman, Trans. Faraday Soc. 36 (1940) 964.

    Article  CAS  Google Scholar 

  42. M. W. Tamele, Disc. Faraday Soc. (1950) 270.

  43. W. L. Dekeyser, in “Science of Ceramics” Vol. 2, edited by G. H. Stewart (Academic Press, London, 1965) p. 243.

    Google Scholar 

  44. T. A. Wheat, E. M. H. Sallam and A. C. D. Chaklader, Ceram. Int. 5 (1979) 42.

    Article  CAS  Google Scholar 

  45. T. Kumazawa, S. Ohta, S. Kanzaki and H. Tabata, in “Ceramic Transactions”, Vol. 6, “Mullite and Mullite Matrix Composites”, edited by S. Somiya, R. F. Davis and J. A. Pask (American Ceramic Society, Westerville, Ohio, 1990) p. 401.

    Google Scholar 

  46. C. S. Hsi, H. Y. Lu and F. S. Yen, J. Mater. Sci. 24 (1989) 2041.

    Article  CAS  Google Scholar 

  47. R. Snel, Appl. Catal. 12 (1984) 189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravorty, A.K. Effect of pH on 980 °C spinel phase-mullite formation of Al2O3-SiO2 gels. JOURNAL OF MATERIALS SCIENCE 29, 1558–1568 (1994). https://doi.org/10.1007/BF00368926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00368926

Keywords

Navigation