Skip to main content
Log in

Hydrodynamic effects on cells in agitated tissue culture reactors

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Tissue cells are known to be sensitive to mechanical stresses imposed on them by agitation in bioreactors. The amount of agitation provided in a microcarrier or suspension bioreactor should be only enough to provide an effective homogeneity. Three distinct flow regions can be identified in the reactor: bulk turbulent flow, bulk laminar flow, and boundary-layer flows. Possible mechanisms of cell damage are examined by analyzing the motion of microcarriers or free cells relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. The primary mechanisms of cell damage appear to result from (a) direct interaction between microcarriers and turbulent eddies, (b) collisions between microcarriers in turbulent flow, and (c) collisions against the impeller or other stationary surfaces. If the smallest eddies of turbulent flow are of the same size as the microcarrier beads, they may cause high shear stresses on the cells. Eddies the size of the average interbead spacing may cause bead-bead collisions which damage cells. The severity of the collisions increases when the eddies are also of the same size as the beads. Bead size and the interbead distance are virtually equal in typical microcarrier suspensions. Impeller collisions occur when the beads cannot avoid the impeller leading edge as it advances through the liquid. The implications of the results of this analysis on the design and operation of tissue culture bioreactors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d cm:

particle diameter

d icm:

impeller diameter

d scm:

average surface-to-surface spacing between particles

E cg cm2 s−2 :

energy of particle-to-particle collisions

E c,ig cm2 s−2 :

energy of particle to impeller collisions

g 980 cm s−2 :

gravitational constant

k cm−1 :

surface to volume ratio term, Eq. (10)

l ecm:

eddy size

m g:

particle mass

n s−1 :

impeller rotational speed

n bcm−3 :

number of particles per unit volume

n B :

number of impeller blades

N ccm−3 s−1 :

particle-particle collision frequency per unit volume

N c,ii cm−3s−1 :

frequency of particle to impeller collisions per unit volume

N p :

power number

Re :

Reynolds number

P g cm s −1 :

agitator power consumption

r cm:

radial distance in spherical coordinate system

R cm:

particle radius

R icm:

impeller leading edge radius

S ucm−1 :

surface area of beads per unit volume

SC g cm−1 s−3 :

severity of particle-to-particle collisions per unit volume

SC i g cm−1s−3 :

severity of particle to impeller collisions

t s:

time between particle collisions

νb,r cm s−1 :

root mean square relative velocity between neighboring particles

νe cm s−1 :

velocity of the smallest eddies

νcm s−1 :

fluid velocity

νt cm s−1 :

bead terminal velocity

νφ cm s−1 φ:

component of fluid velocity around a spherical particle

νt8 cm s−1 :

fluid approach velocity

V cm3 :

reactor liquid volume

V b,tot cm3 :

total bead volume in reactor

w cm:

impeller blade width

x cm:

distance from impeller leading edge

y cm:

distance from impeller surface

α :

volume fraction occupied by particles

β g cm−1 s−1 :

parameter in shear stress definition

γ s−1 :

shear rate

δ cm:

boundary layer thickness

δ lt :

laminar and turbulent δ, respectively

ɛ cm2 s−3 :

energy dissipation rate per unit mass

η cm:

size of smallest eddies

θ :

angle in spherical coordinate system

μ g cm−1 s−1 :

viscosity

ν cm2 s−1 :

kinematic viscosity

ρ f g cm−3 :

fluid density

ϱb g cm−3 :

particle density

τ g cm−1 s−2 :

shear stress

τ w,l :

wall τ in laminar boundary layer

τ w,t :

wall τ in turbulent boundary layer

φ :

angle in spherical coordinate system

ψ :

stream function

avg:

average

b :

bead

f :

fluid

max:

maximum

References

  1. Glacken, M. W.; Fleischaker, R. J.; Sinskey, A. J.: Mammalian cell culture: Engineering principles and scale-up. Trends Biotech. 1 (1983) 102–108

    Google Scholar 

  2. Feder, J.; Tolbert, W. R.: The large scale culture of mammalian cells. Sci. Am. 248 (1983) 36–43

    Google Scholar 

  3. Margaritis, A.; Wallace, J. B.: Novel bioreactor systems and their applications. Biotechnol. 2 (1984) 447–453

    Google Scholar 

  4. Midier, M., Jr.; Finn, R. K.: A model system for evaluating shear in the design of stirred fermentors. Biotechnol. Bioeng. 8 (1966) 71–84

    Google Scholar 

  5. Hirtenstein, M.; Clark, J.: In: Richards, R.; Rajan, K. (Eds.): Tissue culture in medical research. Oxford: Pergamon Press (1980)

    Google Scholar 

  6. Sinskey, A. J.; Fleischaker, R. J.; Tyo, M. A.; Giard, D. J.; Wang, D. I. C.: Production of cell-derived products: Virus and interferon. Ann. NY Acad. Sci. 369 (1981) 47–59

    Google Scholar 

  7. Croughan, M. S.; Wang, D. I. C.; Hamel, J.-F.: Fluid shear effects on animal cells grown in microcarrier cultures. Presented at AIChE National Meeting, Chicago, November 1985

  8. Stathopoulos, N. A.; Hellums, J. D.: Shear stress effects on human embryonic kidney cells in vitro. Biotechnol. Bioeng. 27 (1985) 1021–1026

    Google Scholar 

  9. Frangos, J. A.; Eskin, S. G.; McIntire, L. V.; Ives, C. L.: Flow effects on prostacyclin production by cultured human endothelial cells. Sci. 227 (1985) 1477–1479

    Google Scholar 

  10. Fleischaker, R. J., Jr.; Sinskey, A. J.: Oxygen demand and supply in cell culture. Eur. J. Appl. Microbiol. 12 (1981) 193–197

    Google Scholar 

  11. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N.: Transport phenomena, pp. 56–60. NY: Wiley & Sons 1960

    Google Scholar 

  12. Cooney, C. L.; Koplov, H. M.; Haggstrom, M.: Transient phenomena in continuous culture. In: Calcott, P. H. (Ed.): Continuous culture of cells. Florida: CRC Press, Boca Raton 1981

    Google Scholar 

  13. Harrison, D. E. F.; Topiwala, H. H.: Transient and oscillatory states of continuous culture. Adv. Biochem. Eng. 3 (1974) 67–220

    Google Scholar 

  14. Hansford, G. S.; Humphrey, A. E.: Effect of equipment scale and degree of mixing on continuous fermentation yield at low dilution rates. Biotechnol. Bioeng. 8 (1966) 85–96

    Google Scholar 

  15. Kolmogorov, D. N.; C. R. (Doklady) Acad. Sci. U.S.S.R., N.S. 30 (1941) 301–305

    Google Scholar 

  16. Hinze, J. O.: Turbulent fluid and particle interaction. Prog. Heat Mass Transfer 6 (1971) 433–452

    Google Scholar 

  17. Friedlander, S. K.: Behavior of suspended particles in a turbulent fluid. AIChE J. 3 (1957) 381–385

    Google Scholar 

  18. Panchev, S.: Random functions and turbulence, pp. 144–152. New York: Pergamon Press 1971

    Google Scholar 

  19. Nagata, S.: Mixing — principles and applications, pp. 138–164. New York: Halsted Press 1975

    Google Scholar 

  20. Giard, D. J.; Loeb, D. H.; Thilly, W. G.; Wang, D. I. C.; Levine, D. W.: Human interferon production with diploid fibroblast cells grown on microcarriers. Biotechnol. Bioeng. 21 (1979) 433–442

    Google Scholar 

  21. Soo, S. L.: Fluid dynamics of multiphase systems, p. 263. Mass.: Blaisdell Publ. Co., Waltham 1967

    Google Scholar 

  22. Lee, S. L.; Durst, F.: On the motion of particles in turbulent duct flows. Int. J. Multiphase Flow 8 (1982) 125–146

    Google Scholar 

  23. Microcarrier cell culture — principles and methods. Uppsala, Sweden: Pharmacia Fine Chemicals AB 1981

  24. Einav, S.; Lee, S. L.: Particles migration in laminar boundary layer flow. Int. J. Multiphase Flow 1 (1973) 73–88

    Google Scholar 

  25. Nagata, S., op. cit. p. 36

    Google Scholar 

  26. Perry, R. H.; Chilton, C. H. (Eds.): Chemical engineers' handbook, 5th ed., p. 3–247. New York: McGraw-Hill 1973

    Google Scholar 

  27. Sather, N. F.; Lee, K. J.: Viscosity of concentrated suspensions of spheres. Prog. Heat Mass Trans. 6 (1972) 575–589

    Google Scholar 

  28. Placek, J.; Tavlarides, L. L.: Turbulent flow in stirred tanks. Part I: Turbulent flow in the impeller region. AIChE J. 31 (1985) 1113–1120

    Google Scholar 

  29. Schlichting, H.: Boundary layer theory, 7th ed., pp. 636–640. New York: McGraw-Hill 1979

    Google Scholar 

  30. Ibid pp. 695–696

    Google Scholar 

  31. Ibid pp. 135–144

    Google Scholar 

  32. Brenner, H.: Particles in low Reynolds number flows. Prog. Heat Mass Transfer 6 (1971) 509–574

    Google Scholar 

  33. Saffman, P. G.: The lift on a small sphere in slow shear flow. J. Fluid Mech. 22 (1965) 385–400

    Google Scholar 

  34. Immich, H.: Impulsive motion of a suspension: Effect of antisymmetric stresses and particle rotation. Int. J. Multiphase Flow 6 (1980) 441–471

    Google Scholar 

  35. Cox, R. G.; Zia, I. Y. Z.; Mason, S. G.: Particle motions in sheared suspensions: XXV. Streamline around cylinders and spheres. J. Colloid Interface Sci. 27 (1968) 7–18

    Google Scholar 

  36. Adamczyk, Z.; van de Ven, T. G. M.: Pathlines around freely rotating spheroids in simple shear flow. Int. J. Multiphase Flow 9 (1983) 203–217

    Google Scholar 

  37. Goldman, A. J.; Cox, R. G.; Brenner, H.: Slow viscous motion of a sphere parallel to a plane wall-II. Couette flow. Chem. Eng. Sci. 22 (1967) 653–660

    Google Scholar 

  38. Eichhorn, R.; Small, S.: Experiments on the lift and drag of spheres suspended in a Poiseuille flow. J. Fluid Mech. 20 (1964) 513–527

    Google Scholar 

  39. Spielman, L. A.: Particle capture from low-speed laminar flows. Ann. Rev. Fluid Mech. 9 (1977) 297–319

    Google Scholar 

  40. Davies, C. N.: Air filtration, chap. 3. New York: Academic Press 1973

    Google Scholar 

  41. Schlichting, H., op. cit. p. 39

    Google Scholar 

  42. Bird, R. B. et al., op. cit. p. 136

    Google Scholar 

  43. Schlichting, H., op. cit., p. 97–98

    Google Scholar 

  44. Nagata, S., op. cit., p. 10

    Google Scholar 

  45. Mizrahi, A.: Oxygen in human lymphoblastoid cell line cultures and effect of polymers in agitated and aerated cultures. Dev. Biol. Stds. 55 (1984) 93–102

    Google Scholar 

  46. De Bruyne, N. A.: A high efficiency stirrer for suspension cell culture with or without microcarriers. Adv. Exp. Med. Biol. 172 (1984) 139–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherry, R.S., Papoutsakis, E.T. Hydrodynamic effects on cells in agitated tissue culture reactors. Bioprocess Eng. 1, 29–41 (1986). https://doi.org/10.1007/BF00369462

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369462

Keywords

Navigation