Skip to main content
Log in

An in situ hot stage transmission electron microscopy study of the decomposition of Fe-C austenites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hot stage transmission electron microscopy is applied to determine the growth mechanism during decomposition of austenite in hypo-eutectoid Fe-C austenites. The austenite-ferrite interface is mostly curved and moves sluggishly with periods of acceleration and deceleration. In some cases the interface is nearly straight and effectively immobile. Then, migration takes place by means of ledges which displace parallel to the immobile straight interface. The ledges migrate at a rate equal to the migration rate predicted for diffusion controlled migration. The highest migration rates observed for the curved interface are nearly equal to that calculated for diffusion controlled growth. The observed succession of periods of acceleration and deceleration for the curved interface is not predicted in the common theories for interface mobility during phase transformation. Detailed examination of region around the interface indicate that stress build up and stress relaxation are responsible for the deceleration and acceleration respectively. The stresses are due to the volume misfit between the ferrite formed and the parent austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ågren, Acta Metall. 30 (1982) 841.

    Article  Google Scholar 

  2. R. A. Vandermeer, Acta Metall. Mater. 38 (1990) 2461.

    Article  CAS  Google Scholar 

  3. M. Enomoto, ISIJ Intern. 32 (1992) 297.

    Article  CAS  Google Scholar 

  4. S. Crusius, L. Höglund, U. Knoop, G. Inden and J. Ågren, Z. Metallkde 83 (1992) 729.

    CAS  Google Scholar 

  5. M. Onink, C. M. Brakman, F. D. Tichelaar, E. J. Mittemeijer, S. van der Zwaag, J. H. Root and N. B. Konyer, Scripta Metall Mater. 29 (1993) 1011.

    Article  CAS  Google Scholar 

  6. M. Onink, F. D. Tichelaar, C. M. Brakman, E. J. Mittemeijer and S. van der Zwaag, Z. Metallkde accepted.

  7. K. Sadamori, K. Abiko, H. Kimura, in “Recrystallisation '90”, edited by T. Chandra, p. 491.

  8. D. J. Barber and H. R. Wenk, Phys. Chem. Minerals 17 (1991) 492.

    Article  CAS  Google Scholar 

  9. C. Laird and H. I. Aaronson, Acta Metall. 17 (1969) 505.

    Article  CAS  Google Scholar 

  10. A. Garg and J. M. Howe, Acta Metall. Mater. 39 (1991) 1925.

    Article  CAS  Google Scholar 

  11. F. Khalid, D. V. Edmonds, Ibid. 41 (1993) 3421.

    Article  CAS  Google Scholar 

  12. M. Nemoto, Metall. Trans. A 8A (1977) 43.

    Google Scholar 

  13. G. R. Purdy, Acta Metall. 26 (1978) 477.

    Article  CAS  Google Scholar 

  14. Idem., ibid. 26 (1978) 487.

    Article  CAS  Google Scholar 

  15. R. Q. Hwan and R. J. Behm, J. Vac. Sci. Techn. B 10 (1992) 256.

    Article  Google Scholar 

  16. M. O. Watanabe, T. Kuroda, K. Tanaka and A. Suchai, Ibid. 9 (1991) 924.

    Article  CAS  Google Scholar 

  17. J. R. Bradley, J. M. Rigsbee and H. I. Aaronson, Metall. Trans. A 8A (1977) 323.

    Article  CAS  Google Scholar 

  18. K. R. Kinsman, E. Eichen and H. I. Aaronson, Ibid. 6A (1975) 303.

    Article  CAS  Google Scholar 

  19. J. W. Christian, “The theory of transformation in metals and alloys, part I” 2nd edition (Pergamon press, Oxford, 1975).

    Google Scholar 

  20. V. M. M. Silalahi, M. Onink and S. van der Zwaag, Steel Research in press.

  21. D. Turnbull, Trans AIME 191 (1951) 661.

    Google Scholar 

  22. E. A. Wilson, ISIJ Intern. 34 (1994) 615.

    Article  CAS  Google Scholar 

  23. G. P. Krielaart, M. Onink, F. D. Tichelaar, C. M. Brakman, E. J. Mittemeijer and S. van der Zwaag, Z. Metallkde 85 (1994) 756.

    CAS  Google Scholar 

  24. D. R. G. Mitchell and S. E. Donnelly, Phil Mag. A 63 (1991) 747.

    Article  CAS  Google Scholar 

  25. H. I. Aaronson, in Symposium on Mechanisms of phase transformation in Metals (Institute of Metals, London, 1955).

    Google Scholar 

  26. P. B. Hirsch, R. B. Nicholson, A. Howie and D. W. Pashley, “Electron Microscopy of Thin Crystals” (Butterworths, London, 1965).

    Google Scholar 

  27. J. Weertman, J. Weertman, Elementary dislocation theory (MacMillan, New York, 1967).

    Google Scholar 

  28. O. Kubaschewski, “Iron binary phase diagrams” (Springer, Berlin, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onink, M., Tichelaar, F.D., Brakman, C.M. et al. An in situ hot stage transmission electron microscopy study of the decomposition of Fe-C austenites. Journal of Materials Science 30, 6223–6234 (1995). https://doi.org/10.1007/BF00369670

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369670

Keywords

Navigation