Skip to main content
Log in

Variational approaches for dynamics and time-finite-elements: numerical studies

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents general variational formulations for dynamical problems, which are easily implemented numerically. The development presents the relationship between the very general weak formulation arising from linear and angular momentum balance considerations, and well known variational priciples. Two and three field mixed forms are developed from the general weak form. The variational principles governing large rotational motions are linearized and implemented in a time finite element framework, with appropriate expressions for the relevant “tangent” operators being derived. In order to demonstrate the validity of the various formulations, the special case of free rigid body motion is considered. The primal formulation is shown to have unstable numerical behavior, while the mixed formulation exhibits physically stable behavior. The formulations presented in this paper form the basis for continuing investigations into constrained dynamical systems and multi-rigid-body systems, which will be reported in subsequent papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal O. P.; ShabanaA. A. (1986): Automated visco-elastic analysis of large scale inertia-variant spacial vehicles. Comput. Struct. 22, 165–178

    Google Scholar 

  • Atluri S. N.; Amos A. K. (1987): Large space structures: dynamics and control. Berlin, Heidelberg, New York: Springer (Springer series comp. mechanics)

    Google Scholar 

  • Bailey C. D. (1975): Application of hamilton's law of varying action. AIAA J. 13, 1154–1157

    Google Scholar 

  • Banerjee A. K. (1987): Comment on “relationship between Kane's equations and the Gibbs-Appell equations”. J. Guid. Control Dyn. 10, 596

    Google Scholar 

  • Baruch M.; Riff R. (1982): Hamilton's principle, Hamilton's law-6n correct formulations. AIAA J. 20, 687–692

    Google Scholar 

  • Belytschko T.; Hughes T. J. R. (1981). Computational methods in transient analysis. Amsterdam: North-Holland Publishing

    Google Scholar 

  • Borri M.; Ghiringhelli G. L.; Lans M.; Mantegarra P.; Merlini T. (1985): Dynamic response of mechanical systems by a weak Hamiltonian formulation. Comput. Struct. 20, 495–508

    Google Scholar 

  • Desloge E. A. (1987): Relationship between Kane's equations and the Gibbs-Appell equations. J. Guid. Control Dyn. 10, 120–122

    Google Scholar 

  • Geradin M.; Cardona A. (1989): Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra. Comput. Mech. 4, 115–135

    Google Scholar 

  • Haug E. J.; Wu S. C.; Yang S. M. (1986): Dynamics of mechanical systems with coulomb friction, stiction, impact and constraint addition-deletion — I theory. Mech. Mach. Theory 21, 401–406

    Google Scholar 

  • Haug E. J.; McCullough M. K. (1986): A variational — vector calculus approach to machine dynamics. J. Mech. Trans. Automat. Design 108, 25–30

    Google Scholar 

  • Hughes P. C. (1986). Spacecraft attitude dynamics. New York: Wiley

    Google Scholar 

  • Iura M.; AtluriS. N. (1989): On a consistent theory and variational formulation of finitely stretched and rotated 3-d space-curved beams. Comput. Mech. 4, 73–88

    Google Scholar 

  • Kane T. R.; LevinsonD. A. (1980): Formulation of equations of motion for complex space-craft. J. Guid. Control Dyn. 3, 99–112

    Google Scholar 

  • Kane T. R.; Likins P. W.; Levinson D. A. (1983). Spacecraft dynamics. New York: McGraw-Hill

    Google Scholar 

  • Kardestuncer H. (1987). Finite element handbook. New York: McGraw-Hill

    Google Scholar 

  • Khulief Y. A.; Shabana A. A. (1986): Dynamics of multibody systems with variable kinematic structure. J. Mech. Trans. Automat. Design 108, 167–175

    Google Scholar 

  • Kim S. S.; Shabana A. A.; Haug E. J. (1984): Automated Vehicle Dynamic Analysis with Flexible Components. J. Mech. Trans. Automat. Design 106, 126–132

    Google Scholar 

  • Malkus D. S.; Hughes T. J. R. (1978): Mixed finite element methods-reduced and selective integration techniques: A unification of concepts. Comput. Methods Appl. Mech. Eng. 15, 63–81

    Google Scholar 

  • McCullough M. K.; Haug E. J. (1986): Dynamics of high mobility track vehicles. J. Mech. Trans. Automat. Design 108, 189–196

    Google Scholar 

  • Meirovitch L.: Quinn R. D. (1987): Equations of motion for maneuvering flexible space-craft. J. Guid. Control Dyn. 10, 453–465

    Google Scholar 

  • Modi V. J.; Ibrahim A. M. (1987). On the transient dynamic analysis of flexible orbiting structures. Large space structures: dynamics and control. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Pietraszkiewicz W.; Badur J. (1983): Finite rotations in the description of continuum deformation. Int. J. Eng. Sci. 21, 1097–1115

    Google Scholar 

  • Shi, G. (1988): Nonlinear static and dynamic analyses of large-scale lattice-type structures and nonlinear active control by Piezo actuators. Ph.D. Thesis, Georgia Institute of Technology

  • Smith D. R.; Smith C. V. (1974): When is Hamilton's principle an extremum principle? AIAA J. 12, 1573–1576

    Google Scholar 

  • Struelpnagel J. (1964): On the parametrization of the three-dimensional rotation group. SIAM Rev. 6, 422–430

    Google Scholar 

  • Washizu K. (1980). Variational methods in elasticity and plasticity. 3rd ed. New York: Pergamon Press

    Google Scholar 

  • Wittenburg, J.; Wolz, U. (1985): MESA VERDE: A symbolic program for nonlinear articulated rigid body dynamics. ASME 85-DET-151

  • Zienkiewicz O. C.; Taylor R. L.; Too J. M. (1971): Reduced integration technique in general analysis of plates and shells. Int. J. Num. Methods Eng. 3, 275–290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Yagawa, October 1, 1989

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borri, M., Mello, F. & Atluri, S.N. Variational approaches for dynamics and time-finite-elements: numerical studies. Computational Mechanics 7, 49–76 (1990). https://doi.org/10.1007/BF00370057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370057

Keywords

Navigation