Skip to main content
Log in

Tracer diffusion of some alkali, alkaline-earth and transition element ions in a basaltic and an andesitic melt, and the implications concerning melt structure

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The diffusion properties of Na, Cs, Sr, Ba, Co, Mn, Fe and Sc ions in a basaltic and an andesitic melt have been determined experimentally using the radiotracer residual-activity method, and narrow platinum capillaries, over the temperature range 1,300–1,400° C. Diffusion of all cations follows an Arrhenius relationship; the values of the activation energies range from 24 kcal mol−1 for Na to 67 kcal mol−1 for Co in the andesitic melt, and from 39 kcal mol−1 for Na to 65 kcal mol−1 for Cs in the basaltic melt. Relative diffusivities in the basaltic melt, but not in the andesitic melt, correlate with assumed ionic radii values. Each cation, except Na+, diffuses faster in the basaltic melt than in the andesitic melt over the studied temperature range. Sodium shows similar diffusivity in the two melts.

Compensation diagrams incorporating new and some previously-published data indicate that Cs probably diffuses by different mechanisms in different silicate glass and melt systems. Iron has a relatively high activation energy which is consistent with its part occupancy of tetrahedral co-ordination polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal DP, Gaskell DR (1975) The self diffusion of iron in Fe2SiO4 and CaFeSiO4 melts. Metall Trans 6B:263–267

    Google Scholar 

  • Carron J-P (1968) Autodiffusion du sodium et conductivité électrique dans les obsidiennes granitiques. CR Acad Sci Paris 266:854–856

    Google Scholar 

  • Dowty E (1980) Crystal-chemical factors affecting the mobility of ions in minerals. Am Mineral 65:174–182

    Google Scholar 

  • Francis PW, Roobol MJ, Walker GPL, Cobbold PR, Coward M (1974) The San Pedro and San Pablo Volcanoes of northern Chile and their hot avalanche deposits. Geol Rundschau 63:357–388

    Google Scholar 

  • Gupta YP, King TB (1967) Self-diffusion of sodium in sodium silicate liquids. Trans Metall Soc AIME 239:1701–1707

    Google Scholar 

  • Hofmann AW (1980) Diffusion in natural silicate melts: A critical review. In: Hargraves RB (ed) Physics of magmatic processes. Princeton Univ Press, New Jersey, pp 385–417

    Google Scholar 

  • Hofmann AW, Magaritz M (1977) Diffusion of Ca, Sr, Ba and Co in a basalt melt: Implications for the geochemistry of the mantle. J Geophys Res 82:5432–5440

    Google Scholar 

  • Huebner JS (1971) Buffering techniques for hydrostatic systems at elevated pressures. In: Ulmer GC (ed) Research techniques for high pressure and high temperature. Springer, Berlin Heidelberg New York, pp 123–177

    Google Scholar 

  • Ivanov IA, Pavlov AB (1975) Diffusion of alkaline earth cations in alkali silicate melts. Electrokhim 11:1362–1364

    Google Scholar 

  • Jambon A (1980) Diffusion cationique dans les silicates fondus: étude expérimentale et modèles pétrologiques. Thèse d'Etat, Université d'Orléans, 197 pp

  • Jambon A (1982) Tracer diffusion in granitic melts: Experimental results for Na, K, Rb, Cs, a, Sr, Ba, Ce, Eu to 1,300° C and a model of calculation. J Geophys Res (in press)

  • Jambon A, Carron J-P (1973) Étude expérimentale de la diffusion des éléments alcalins K, Rb, Cs dans une obsidienne granitique. CR Acad Sci Paris 276 Sér-D: 3069–3072

    Google Scholar 

  • Jambon A, Carron J-P (1976) Diffusion of Na, K, Rb, Cs in glass of albite and orthoclase composition. Geochim Cosmochim Acta 40:897–903

    Google Scholar 

  • Jambon A, Carron J-P (1978) Étude expérimentale de la diffusion cationique dans une verre basaltique: alcalins et alcalinoterreux. Bull Mineral 101:22–26

    Google Scholar 

  • Jambon A, Semet MP (1978) Lithium diffusion in silicate glasses of albite, orthoclase and obsidian composition: an ion-microprobe determination. Earth Planet Sci Lett 37:445–450

    Google Scholar 

  • Jambon A, Carron J-P, Delbove F (1978) Données préliminaires sur la diffusion dans les magmas hydratés: le césium dans un liquide granitique à 3 kb. CR Acad Sci Paris 287 Sér D: 403–406

    Google Scholar 

  • Johnston WD (1965) Oxidation-reduction equilibria in molten Na20.2SiO2 glass. J Am Ceram Soc 48:184–190

    Google Scholar 

  • Lowry RK, Reed SJB, Nolan J, Henderson P, Long JVP (1981) Lithium tracer-diffusion in an alkali-basaltic melt — an ionmicroprobe determination. Earth Planet Sci Lett 53:36–40

    Google Scholar 

  • Magaritz M, Hofmann AW (1978a) Diffusion of Eu and Gd in basalt and obsidian. Geochim Cosmochim Acta 42:847–858

    Google Scholar 

  • Magaritz M, Hofmann AW (1978b) Diffusion of Sr Ba and Na in obsidian. Geochim Cosmochim Acta 42:595–605

    Google Scholar 

  • Malkin B, Mogutnov M (1961) Self diffusion of alkali ions in silicate melts. Dokl Akad Nauk, SSR 141:1127–1130

    Google Scholar 

  • Negodaev GD, Ivanov IA, Eustopev KK (1972) Diffusion of sodium and potassium cations in Na2O-K2O-SiO2 melts. Electrokhim 8:706–723

    Google Scholar 

  • Nelson C, White WB (1980) Transition metal ions in silicate melts- I. Manganese in sodium silicate melts. Geochim Cosmochim Acta 44:887–893

    Google Scholar 

  • Rizzo RA (1976) Electrochemical studies of first row transition elements in calcium magnesium silicates at 1,525° C. In: Pemsler P (ed) Proc Intern Symp Molten Salts. Electrochem Soc NJ, pp 36–52

    Google Scholar 

  • Saito T, Maruya K (1958) Diffusion of calcium in liquid slags. Sci Rept Tohuku Univ. Ser A 10:306–314

    Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272:870–893

    Google Scholar 

  • Sippel RF (1963) Sodium self diffusion in natural minerals. Geochim Cosmochim Acta 27:107–120

    Google Scholar 

  • Towers H, Chipman J (1957) Diffusion of calcium and silicon in a lime-alumina-silica slag. Trans AIME 209:769–773

    Google Scholar 

  • Waff HS (1977) The structural role of ferric iron in silicate melts. Can Mineral 15:198–199

    Google Scholar 

  • Watson EB (1979a) Calcium diffusion in a simple silicate melt to 30 kbar. Geochim Cosmochim Acta 43:313–332

    Google Scholar 

  • Watson EB (1979b) Diffusion of cesium ions in H2O saturated granitic melt. Science 205:1259–1260

    Google Scholar 

  • Watson EB (1981) Diffusion in magmas at depth in the earth: the effects of pressure and dissolved H2O. Earth Planet Sci Lett 52:291–301

    Google Scholar 

  • Winchell P (1969) The compensation law for diffusion in silicates. High Temp Sci 1:200–215

    Google Scholar 

  • Yang L, Chien C, Derge G (1959) Self diffusion of iron in iron silicate melt. J Chem Phys 30:1627

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowry, R.K., Henderson, P. & Nolan, J. Tracer diffusion of some alkali, alkaline-earth and transition element ions in a basaltic and an andesitic melt, and the implications concerning melt structure. Contr. Mineral. and Petrol. 80, 254–261 (1982). https://doi.org/10.1007/BF00371355

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371355

Keywords

Navigation