Skip to main content
Log in

Progressive ordering of cristobalitic silica in the early stage of diagenesis

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Examination of hydrothermally transformed silica from controlled experiments reveals that amorphous silica changes to quartz through an intermediate phase of opal-CT and that the d(101) spacing of cristobalite progressively decreases from 4.10 Å to 4.05 Å. The rate of spacing decrease is definitely dependent on the reaction temperature, being faster at higher temperatures. This spacing change represents ordering of opal-CT crystals with the passage of time.

The relationship between thermal history and degree of ordering suggests that stratigraphic boundaries are usually parallel to isopleths of d (101) spacings, but do not always coincide with them. The isopleths should be more or less discordant to the stratigraphic boundaries where the strata have been folded. This discordancy can be ascribed to the difference of ordering, chiefly controlled by the thermal history during the burial and folding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bettermann, P., Liebau, F.: The transformation of amorphous silica to crystalline silica under hydrothermal conditions. Contrib. Mineral. Petrol. 53, 25–36 (1975)

    Google Scholar 

  • Ernst, W.G., Calvert, S.E.: An experimental study of the recrystallization of porcellanite and its bearing on the origin of some bedded cherts. Am. J. Sci. 267A, 114–133 (1969)

    Google Scholar 

  • Flörke, O.W.: Der Einfluβ der Alkali-Ionen auf die Kristallisation des SiO2. Fortschr. Mineral. 32, 33–35 (1953)

    Google Scholar 

  • Flörke, O.W.: Zur Frage des “Hoch”-Cristobalit in Opalen, Bentoniten und Gläsern. Neues Jahrb. Mineral. Monatsh. 217–223 (1955)

  • Flörke, O.W., Jones, J.B., Segnit, E.R.: Opal-CT crystals. Neues Jahrb. Mineral. Monatsh. 369–377 (1975)

  • Garrison, R.E., Rowland, S.M., Horan, L.J., Moore, J.C.: Petrology of siliceous rocks recovered from marginal seas of the Western Pacific, Leg 31, Deep Sea Drilling Project. In: Initial Reports of the Deep Sea Drilling Project (D.E. Karig et al., ed.), Vol. 31, pp. 519–529. Washington: U.S. Government Printing Office 1975

    Google Scholar 

  • Greenwood, R.: Cristobalite: its relationship to chert formation in selected samples from the Deep Sea Drilling Project. J. Sediment. Petrol. 43, 700–708 (1973)

    Google Scholar 

  • Heath, G.R.: Cherts from the Eastern Pacific, Leg 16, Deep Sea Drilling Project. In: Initial Reports of the Deep Sea Drilling Project (T.H. van Andel et al., ed.), Vol. 16, pp. 609–613. Washington: U.S. Government Printing Office 1973

    Google Scholar 

  • Heydemann, A.: Untersuchungen über die Bildungsbedingungen von Quarz im Temperaturbereich zwischen 100°C und 250 °C. Beitr. Mineral. Petrog. 10, 242–259 (1964)

    Google Scholar 

  • Jones, J.B., Segnit, E.R.: The nature of opal. I. Nomenclature and constituent phases. J. Geol. Soc. Australia 18, 57–68 (1971)

    Google Scholar 

  • Jones, J.B., Segnit, E.R.: Genesis of cristobalite and tridymite at low temperatures. J. Geol. Soc. Australia 18, 419–422 (1972)

    Google Scholar 

  • Keene, J.B.: Cherts and porcellanites from the North Pacific, DSDP Leg 32. In: Initial Reports of the Deep Sea Drilling Project (R.L. Larson et al., ed.), Vol. 32, pp. 429–508. Washington: U.S. Government Printing Office 1975

    Google Scholar 

  • Kelts, K.: Summary of chert occurrences from Line Islands Sites 314, 315, 316 DSDP Leg 33. In: Initial Reports of the Deep Sea Drilling Project (S.O. Schlanger et al., ed.), Vol. 33, pp. 855–866. Washington: U.S. Government Printing Office 1976

    Google Scholar 

  • Mizutani, S.: Transformation of silica under hydrothermal conditions. J. Earth Sci., Nagoya Univ. 14, 56–88 (1966)

    Google Scholar 

  • Mizutani, S.: Kinetic aspects of diagenesis of silica in sediments. J. Earth Sci., Nagoya Univ. 15, 99–111 (1967)

    Google Scholar 

  • Mizutani, S.: Silica minerals in the early stage of diagenesis. Sedimentology 15, 419–436 (1970)

    Google Scholar 

  • Murata, K.J., Larson, R.R.: Diagenesis of Miocene siliceous shales, Temblor Range, California. J. Res. U.S. Geol. Surv. 3, 553–566 (1975)

    Google Scholar 

  • Murata, K.J., Nakata, J.K.: Cristobalitic stage in the diagenesis of diatomaceous shale. Science 184, 567–568 (1974)

    Google Scholar 

  • Murata, K.J., Randall, R.G.: Silica mineralogy and structure of the Monterey Shale, Temblor Range, California. J. Res. U.S. Geol. Surv. 3, 567–572 (1975)

    Google Scholar 

  • Oehler, J.H.: Hydrothermal crystallization of silica gel. Geol. Soc. Am. Bull. 87, 1143–1152 (1976)

    Google Scholar 

  • Rad, U. von, Rösch, H.: Petrography and diagenesis of deep-sea cherts from the central Atlantic. Inter. Assoc. Sediment. Spec. Publ. 1, 327–347 (1974)

    Google Scholar 

  • Stein, C.L., Kirkpatrick, R.J.: Experimental porcellanite recrystallization kinetics: a nucleation and growth model. J. Sediment. Petrol. 46, 430–435 (1976)

    Google Scholar 

  • Vedder, J.G.: Geologic map of the Wells Ranch and Elkhorn Hills quadrangles, San Luis Obispo and Kern Counties, California, showing juxtaposed Cenozoic rocks along the San Andreas fault. U.S. Geol. Surv. Misc. Geol. Inv. Map I-585 (1970)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizutani, S. Progressive ordering of cristobalitic silica in the early stage of diagenesis. Contrib. Mineral. Petrol. 61, 129–140 (1977). https://doi.org/10.1007/BF00374363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374363

Keywords

Navigation