Skip to main content
Log in

A coupled cubic hermite finite element/boundary element procedure for electrocardiographic problems

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The problem considered is that of trying to determine the potential distribution inside a human torso as a result of the heart's electrical activity. We describe here a high order (cubic Hermite) coupled finite element/boundary element procedure for solving such electrocardiographic potential problems inside an anatomically accurate human torso. Details of the cubic Hermite boundary element procedure and its coupling to the finite element method are described. We then present two and three dimensional test results showing the success, efficiency and accuracy of this high order coupled technique. Some initial results on an anatomically accurate torso are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradley, C. P.; Pullan, A. J.; Hunter, P. J. 1995: ‘Geometric modelling of the human torso using cubic Hermite elements’, Submitted to Annals of Biomedical Engineering

  • Brebbia, C. A.; Telles, J. C. F.; Wrobel, L. C. 1984: Boundary element techniques: theory and applications in engineering, Spring-Verlag, New York

    Google Scholar 

  • Downer, G. E.; Bastos, M. H.; Osborne, J. A. 1980: ‘On deriving the electrocardiogram from vectorcardiographic leads.’ Clin. Cardiol. 3: 87–95

    Google Scholar 

  • Gale, T. J.; Kilpatrick, D.; Johnson, P. R.; Nicholls, P. M. 1983: ‘A three-dimensional boundary element model of the electric field from implantable defibrillators’, Boundary Element Communications 5 (1): 12–14

    Google Scholar 

  • Gulrajani, R. M.; Mailloux, G. E. 1983: ‘A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models’, Circ. Res. 52: 43–56

    Google Scholar 

  • Huiskamp, G. J.; vanOosterom, A. 1988: The depolarization sequence of the human heart surface computed from measured body surface potentials’, IEEE Trans. Biomed. Eng. 35 (12): 1047–1059

    Google Scholar 

  • Hunter, P. J.; Nielson, P. M. F.; Smaill, B. H.; LeGrice, I. J.; Hunter, I. W. 1993: An anatomical heart model with applications to myocardial activation and ventricular mechanics, in T. C. Pilkington, B. Loftis, J. F. Thompson, S. L.-Y. Woo, T. C. Palmer and T. F. Budinger, eds, ‘High-Performance Computing in Biomedical Research’, CRC Press, Boca Ration, Flordia, pp. 3–26

    Google Scholar 

  • Johnson, C. R.; MacLeod, R. S.; Ershler, P. R. 1992: ‘A computer model for the study of electrical current flow in the human thorax’, Computers in Biology and Medicine 22 (5): 305–323

    Google Scholar 

  • Karlon, W. J.; Eisenberg, S. R.; Lehr, H. L. 1993: ‘Effects of paddle placement and size on defibrillation current distribution: A three-dimensional finite element model’, IEEE Trans. Biomed. Eng. 40 (3): 246–255

    Google Scholar 

  • Lachat, J. C.; Watson, J. O. 1976: ‘Effective numerical treatment of boundary integral equations: A formulation for three-dimensional electrostatics’, Int. J. Numer. Methods Eng. 10: 991–1005

    Google Scholar 

  • Liu, Y.; Rizzo, F. J. 1992: A weakly singular form of the hypersingular boundary integral equation applied to 3D acoustic wave problems’, Computer Methods in Applied Mechanics and Engineering 96: 271–287

    Google Scholar 

  • Liu, Y.; Rudolphi, T. J. 1991: Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations’, Engineering Analysis with Boundary Elements 8 (6): 301–311

    Google Scholar 

  • Nielsen, P. M. F.; LeGrice, I. J.; Smaill, B. H.; Hunter, P. J. 1991 ‘Mathematical model of geometry and fibrous structure of the heart’, Am. J. Physiol. 260 (29 (Heart Circ. Physiol)), H1365-H1378

    Google Scholar 

  • Rudy, Y.; Plonsey, R. 1979. ‘The eccentric spheres model as the basis for a study of the role of geometry and inhomogeneities in electrocardiogrphy’, IEEE Trans. Biomed. Eng. 26 (7): 392–399

    Google Scholar 

  • Stanley, P. C.; Pilkington, T. C. 1989: ‘The combination method: A numerical technique for electrocardiographic calculations’, IEEE Trans. Biomed. Eng. 36 (4): 456–461

    Google Scholar 

  • Stanley, P. C.; Pilkington, T. C.; Morrow, M. N.; Ideker, R. K. 1991: ‘An assessment of variable thickness and fiber orientation of the skeletal muscle layer on electrocardiogrpahic calculations’, IEEE Trans. Biomed. Eng. 38 (11): 1069–1076

    Google Scholar 

  • Telles, J. C. F. 1987: ‘A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals’, Int. J. Numer. Methods Eng. 24: 959–973

    Google Scholar 

  • Tomlinson, K. A.; Bradley, C. P.; Pullan, A. J. 1996: ‘On the choice of a derivative boundary element formulation using hermite interpolation’, Int. J. Numer. Methods Eng. 39: 451–468

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Cruse, 8 April 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pullan, A.J., Bradley, C.P. A coupled cubic hermite finite element/boundary element procedure for electrocardiographic problems. Computational Mechanics 18, 356–368 (1996). https://doi.org/10.1007/BF00376131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376131

Keywords

Navigation