Skip to main content
Log in

On the origin of growth stresses in trees

Part 1: Micro mechanics of the developing cambial cell wall

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

A mechanism for growth stress generation is studied which involves a contractive strain in the microfibril direction and swelling strain in the transverse direction in the developing wall of wood cells. A cylindrically anisotropic elastic model is used to calculate the accumulation of residual stresses in the S2 wall as it is formed. An explicit relation between the shrinkage/swelling strains in the growth increment of the cell wall and the resulting axial and circumferential stresses induced in the cell is derived. For gymnosperm cells the transition from tensile stress in normal wood cells to compressive stress in compression wood cells is found with increasing microfibril angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, R. R.; Byrnes, F. E. 1974: On the distribution of tree growth stresses. Part I: An anisotropic plane strain theory. Wood Sci. Technol. 8: 184–196

    Google Scholar 

  • Archer, R. R. 1976: On the distribution of tree growth stresses. Part II: Stresses due to axisymmetric growth strains. Wood Sci. Technol. 10: 293–309

    Google Scholar 

  • Archer, R. R. 1979: On the distribution of tree growth stresses. Part III: The case of inclined grain. Wood Sci. Technol. 13: 67–78

    Google Scholar 

  • Barber, N. F.; Meylan, B. A. 1964: The anisotropic shrinkage of wood. A theoretical model. Holzforschung 18: 146–156

    Google Scholar 

  • Barrett, J. D.; Schniewind, A. P. 1973: Three-dimensional finite-element models of cylindrical wood fibers. Wood Fiber: 215–225

  • Beck, J. L. 1974: Anisotropic theory of growth stresses in trees. Phys. Eng. Lab., Dep. Sci. Ind. Res., Lower Hutt, New Zealand Rep. 452, 32 pp.

  • Bendtsen, B. A.; Senft, J. 1986: Mechanical and anatomical properties in individual growth rings of plantation-grown eastern cottonwood and loblolly pine. Wood Fiber 18: 23–38

    Google Scholar 

  • Bodig, J.; Jayne, B. A. 1982: Mechanics of wood and wood composites. Van Nostrand, New York, 712 pp.

    Google Scholar 

  • Boyd, J. D. 1972: Tree growth stresses. Part V: Evidence of an origin in differentiation and lignification. Wood Sci. Technol. 6: 251–262

    Google Scholar 

  • Boyd, J. D. 1973a: Compression wood force generation and functional mechanics. New Zealand of For. Sci. 3: 240–258

    Google Scholar 

  • Boyd, J. D. 1973b: Helical fissures in compression wood cells. Causative factors and mechanics of development. Wood Sci. Technol. 7: 92–111

    Google Scholar 

  • Crandall, S. H.; Dahl, N. C.; Lardner, T. J. 1978: An introduction to the mechanics of solids. McGraw-Hill, New York, 628 pp.

    Google Scholar 

  • Dadswell, H. E.; Wardrop, A. B. 1956: The importance of tension wood in timber utilization. Aust. Pulp. Paper Ind. Tech. Assoc. Proc. 10: 30–42

    Google Scholar 

  • Fengel, D. 1969: The ultrastructure of cellulose for wood. Part I: Wood as a basic material for the isolation of cellulose. Wood Sci. Technol. 3: 203–217

    Google Scholar 

  • Kubler, H. 1959a: Studien über Wachstumsspannungen des Holzes. Erste Mitteilung: Die Ursache der Wachstumsspannungen und die Spannungen quer zur Faserrichtung. Holz Roh-Werkstoff 17: 1–9

    Google Scholar 

  • Kubler, H. 1959b: Studien über Wachstumsspannungen des Holzes. Zweite Mitteilung: Die Spannungen in Faserrichtung. Holz Roh-Werkstoff 17: 44–54

    Google Scholar 

  • Lekhnitskii, S. G. 1963: Theory of elasticity of an anisotropic elastic body. Holden Day, San Francisco

    Google Scholar 

  • Mark, R. E. 1967: Cell wall mechanics of tracheids. Yale Univ. Press, New Haven

    Google Scholar 

  • Mark, R. E.; Gillis, P. P. 1970: New models in cell-wall mechanics. Wood Fiber 2: 79–95

    Google Scholar 

  • Munch, E. 1938: The statics and dynamics of the spiral structure of the cell wall, especially of compression and tension wood. Translated from: Flora 32: 357–424 (CSIRO Australia D. Armstrong and I. J. W. Bisset 1948)

    Google Scholar 

  • Okuyama, T.; Kikata, Y. 1975: The residual stresses in wood logs due to growth stresses. Mokuzai Gakkaishi 21: 326–327

    Google Scholar 

  • Okuyama, T.; Sasaki, Y.; Kikata, Y. 1981: The seasonal change in growth stress in the tree trunk. Mokuzai Gakkaishi 27: 350–355

    Google Scholar 

  • Okuyama, T.; Kawai, A.; Kikata, Y. 1983: Growth stresses and uneven gravitational-stimulus in trees containing reaction wood. Mokuzai Gakkaishi 29: 190–196

    Google Scholar 

  • Okuyama, T.; Kawai, A.; Kikata, Y. 1986: The growth stresses in reaction wood. Paper submitted to XVIII World Congress, Ljubljana, Yugoslavia

  • Pillow, M. Y.; Luxford, R. F. 1937: Structure, occurrence, and properties of compression wood. Tech. Bull. # 546, USDA pp. 32

  • Sasaki, Y.; Okuyama, T.; Kikata, Y. 1978: The evolution process of the growth stress in the tree. Mokuzai Gakkaishi 24: 149–157

    Google Scholar 

  • Schniewind, A. P.; Barrett, J. D. 1969: Cell-wall model with complete shear restraint. Wood Fiber 1: 205–214

    Google Scholar 

  • Suzuki, M. 1969: Relationship between Young's modulus and the cell wall structure of sugi. J. Japan Wood Res. Soc. 15: 278–284

    Google Scholar 

  • Tang, R. C. 1972: Three dimensional analysis of elastic behavior of wood fiber. Wood Fiber 3: 210–219

    Google Scholar 

  • Wilson, B. F.; Howard, R. A. 1968: A computer model for cambial activity. For. Sci. 14: 77–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, R.R. On the origin of growth stresses in trees. Wood Sci.Technol. 21, 139–154 (1987). https://doi.org/10.1007/BF00376194

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376194

Keywords

Navigation