Skip to main content
Log in

Response of aluminium-infiltrated boron carbide cermets to shock wave loading

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Shock-recovery and shock-spallation experiments were performed on two compositions of aluminium-infiltrated B4C cermets as a function of shock pressure. Sixty-five per cent volume B4C-Al cermets were recovered largely intact after shock loading up to pressures of ca. 12 GPa which permitted a critical study of the microstructural changes produced by the shock. Significantly, shock loading to between 12 and 13 GPa produced a combination of dislocation debris, stacking faults and deformation twins in a small fraction of the B4C grains. Fragmentation of shock-loaded 80% B4C-Al samples prevented meaningful microstructural investigation. Spall-strength testing also provided indirect evidence for the Hugoniot elastic limits (HEL) of these composites. Spall-strength calculations based on an elastic equation of state for 65% B4C-Al indicated that the elastic regime extended up to shock pressures of ca. 10 GPa, or approximately 65% of the HEL of polycrystalline B4C. A complete loss of spall strength was then observed at the transition to a plastic equation of state at a pressure of 12 GPa which coincided with observations of plasticity within the B4C-substructure. This study demonstrated that composites containing a highly ductile phase combined with a high compressive strength ceramic phase could support high dynamic tensile stresses by resisting the propagation of catastrophic cracks through the brittle ceramic substructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Grady and M. E. Kipp, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 16 (1979) 293.

    Article  Google Scholar 

  2. M. E. Kipp and D. E. Grady, “Shock compression and release in high-strength ceramics” (Sandia National Laboratory, SAND89-1461, UC-704, July 1989).

  3. G. T. Gray III, “Shock-wave and high strain-rate phenomena in materials”, edited by M. Meyers, L. Murr and K. Staudhammer (Mercel Dekker, New York, 1992) p. 899.

    Google Scholar 

  4. Y. Syono, T. Goto, Y. Nakagawa and M. Kitamura, in “High pressure research”, edited by M. H. Manghnani and S. Akimoto (Academic Press, New York, 1977) p. 477.

    Chapter  Google Scholar 

  5. D. E. Grady, ibid.in “ p. 389.

    Chapter  Google Scholar 

  6. R. Jealoz, J. Geophysical Res. 85 (1980) 3163.

    Article  Google Scholar 

  7. J. A. Brusso, D. E. Mikkola, J. E. Flinn and P. V. Kelsey, Scripta Metall. 22 (1988) 47.

    Article  CAS  Google Scholar 

  8. D. M. Vanderwalker and W. J. Croft, J. Mater. Res. 3 (1988) 761.

    Article  CAS  Google Scholar 

  9. L. Lourdo, A. Lindfors and M. Meyers, Dymat88 J. De Physique Colloque C3 Supplement # 9 49 (1988) 133.

    Google Scholar 

  10. D. Millius, Private communication (1989).

  11. T. P. Liddiard Jr, in “Fourth symposium on detonation”, edited by USNOL (US Government Printing Office, Washington, DC 1965) p. 214.

    Google Scholar 

  12. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 41 (1970) 4208.

    Article  CAS  Google Scholar 

  13. V. I. Romanchenko and G. V. Stepanov, Zhur. Prik. Mekh. Tekh. Fia. 4 (1980) 141.

    Google Scholar 

  14. G. T. Gray III, P. S. Follansbee and C. E. Frantz, Mater. Sci. Engng. A111 (1989) 9.

    Article  CAS  Google Scholar 

  15. E. P. Papadakis, in “Physical acoustics principles and methods”, Vol. 12, edited by W. P. Mason and R. N. Thurston (Academic Press, New York, 1976) Ch. 5.

    Google Scholar 

  16. G. T. Gray III and J. C. Huang, Mater. Sci. Engng. A1415 (1991) 21.

    Article  Google Scholar 

  17. G. H. Kim, M. Sarikaya, D. L. Millius and A. K. Aksay, in “Proceedings of the 47th Annual Meeting of the Electron Microscopy Society of America”, edited by G. W. Bailey (San Francisco Press, CA, 1989) p. 562.

    Google Scholar 

  18. W. Voigt, in “Lehrbuch der kristallphysik” (Teubner, Leipzig, Germany, 1928) p. 739.

    Google Scholar 

  19. A. Reuss, Z. Angew. Math. Mech. 9 (1929) 49.

    Article  CAS  Google Scholar 

  20. R. Hill, Proc. Phys. Soc London A65 (1952) 349.

    Article  Google Scholar 

  21. W. R. Blumenthal, Unpublished work.

  22. P. S. Follansbee, in “Shock compression of condensed matter — 1989”, edited by S. Schmidt, J. N. Johnson and L. Davidson (Elsevier, New York, 1990) p. 349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenthal, W.R., Gray, G.T. & Claytor, T.N. Response of aluminium-infiltrated boron carbide cermets to shock wave loading. Journal of Materials Science 29, 4567–4576 (1994). https://doi.org/10.1007/BF00376280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376280

Keywords

Navigation