Skip to main content
Log in

Guidance properties of nonlinear planar waveguides

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We discuss the propagation of electromagnetic waves through a stratified dielectric. The ability of such a device to support guided waves depends upon the way in which the refractive index varies across the layers. In the present discussion, we show how nonlinear effects and appropriate stratification can be used to obtain any one of the following behaviours:

  1. (i)

    guidance occurs only at low power.

  2. (ii)

    guidance occurs only at high power.

  3. (iii)

    guidance occurs at all powers.

  4. (iv)

    there is no guidance.

The situation (i) is obtained by using materials with a defocusing dielectric response, whereas the situation (ii) is obtained for suitable configurations of self-focusing materials. The situations (iii) and (iv) can be obtained by using either defocusing or self-focusing materials.

By seeking solutions of a particular form, we reduce the problem to the study of solutions in the Sobolev space H 1(ℝ) of a second-order differential equation.

The discussion of defocusing nonlinearities is based in the study of the global behaviour of the branch of solutions bifurcating from a simple eigenvalue. For self-focusing nonlinearities we use a variational approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mihalache, D., Bertolotti, M. & Sibilia, C.: Nonlinear wave propagation in planar structures, in Progress in Optics XXVII, edited by E. Wolf, Elsevier, 1989.

  2. Stuart, C. A.: Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal. 113 (1991), 65–96.

    Google Scholar 

  3. McLeod, J. B., Stuart, C. A. & Troy, W. C.: An exact reduction of Maxwell's equations, in Proc. Gregynogg Conference, Birkhäuser, 1992, 391–405.

  4. John, O. & Stuart, C. A.: in preparation.

  5. Brézis, H.: Analyse Fonctionnelle, Masson, Paris, 1983.

    Google Scholar 

  6. Edmunds, D. E. & Evans, W. D.: Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987.

    Google Scholar 

  7. Born, M. & Wolf, E.: Principles of Optics, fifth edition, Pergamon Press, Oxford, 1975.

    Google Scholar 

  8. Akhmanov, R. V., Khokhlof, R. V. & Sukhorukov, A. P.: Self-focusing, self-defocusing and self-modulation of laser beams, in Laser Handbook, edited by F. T. Arecchi & E. O. Schulz Dubois, North Holland, Amsterdam, 1972.

    Google Scholar 

  9. Svelto, O.: Self-focusing, self-trapping and self-modulation of laser beams, in Progress in Optics XII, edited by E. Wolf, North Holland, Amsterdam, 1974.

    Google Scholar 

  10. Stegeman, G. I., Ariyasu, J., Seaton, C. I., Shen, T-R & Moloney, J. V.: Nonlinear thin-film guided waves in non-Kerr media, Appl. Phys. Lett. 47 (1985), 1254–1256.

    Google Scholar 

  11. Langbein, U., Lederer, F., Peschel, T. & Ponoth, H.-E.: Nonlinear guided waves in saturable nonlinear media, Opt. Lett. 10 (1985), 571–573.

    Google Scholar 

  12. Morse, P. M. & Feshbach, H.: Methods of Mathematical Physics, Vol. 2, McGraw-Hill, New York, 1953 (page 1651).

    Google Scholar 

  13. Stuart, C. A.: Global properties of components of solutions of second order ordinary differential equations on the half-line, Ann. Sc. Norm. Sup. Pisa 2 (1975), 265–286.

    Google Scholar 

  14. Stuart, C. A.: The behaviour of branches of solutions of non-linear eigenvalue problems, Rend. Ist. Mat. Univ. Trieste 19 (1987), 139–154.

    Google Scholar 

  15. Stuart, C. A.: Bifurcation from the essential spectrum for some non-compact non-linearities, Math. Meth. Appl. Sci. 11 (1989), 525–542.

    Google Scholar 

  16. Eastham, M. S. P.: Theory of Ordinary Differential Equations, Van Nostrand Reinhold, 1970.

  17. Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE, Springer-Lecture Notes in Math. 1150, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  18. Mossino, J.: Inequalités Isopérimétriques et Applications en Physique, Hermann, Paris, 1984.

    Google Scholar 

  19. Schechter, M.: Operator Methods in Quantum Mechanics, North Holland, New York, 1981.

    Google Scholar 

  20. Stegeman, G. I.: Nonlinear guided wave optics, in Contemporary Nonlinear Optics, edited by G. P. Agrawal & R. W. Boyd, Academic Press, Boston, 1992.

    Google Scholar 

  21. Akhmediev, N. N.: Novel class of nonlinear surface waves: Asymmetric modes in a symmetric layered structure, Sov. Phys. JETP 56 (1982), 299–303.

    Google Scholar 

  22. Chen, W. & Maradudin, A. A.: s-polarised guided waves and surface electromagnetic waves supported by a nonlinear dielectric film, J. Opt. Soc. Amer. B 5 (1988), 529–538.

    Google Scholar 

  23. Stegeman, G. I., Wright, E. M., Seaton, C. T., Moloney, J. V., Shen, T.-R, Maradudin, A. A. & Wallis, R. F.: Nonlinear slab-guided waves in non-Kerr-like media, IEEE J. Quantum Elect. 22 (1986), 977–983.

    Google Scholar 

  24. Seaton, C. T., Valera, J. D., Shoemaker, R. L., Stegeman, G. I., Chilwell, J. T. & Smith, S. D.: Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media, IEEE J. Quantum Elect. 21 (1985), 774–783.

    Google Scholar 

  25. Sakakibara, T. & Okamoto, N.: Nonlinear TE waves in a dielectric slab waveguide with two optically nonlinear layers, IEEE J. Quantum Elect. 23 (1987), 2084–2088.

    Google Scholar 

  26. Trutschel, V., Lederer, F. & Golz, M.: Nonlinear guided waves in multilayer systems, IEEE J. Quantum Elect. 25 (1989), 194–200.

    Google Scholar 

  27. Mathew, J. G. H., Kar, A. K., Heckenberg, N. R. & Galbraith, I.: Time resolved self-defocusing in InSb at room temperature, IEEE J. Quantum Elect. 21 (1985), 94–99.

    Google Scholar 

  28. Chen, Y.: Effects of nonlinear saturation on vector spatial solitons, J. Opt. Soc. Amer. B 8 (1991), 2466–2469.

    Google Scholar 

  29. Krolikowski, W. & Luther-Davies, B.: Analytic solution for soliton propagation in a nonlinear saturable medium, Opt. Lett. 17 (1992), 1414–1416.

    Google Scholar 

  30. Gatz, S. & Hermann, J.: Soliton propagation in materials with saturable nonlinearity, J. Opt. Soc. Am. B 8 (1991), 2296–2302.

    Google Scholar 

  31. Sammut, R. A. & Pask, C.: Gaussian and equivalent-step-index approximations for nonlinear wave-guides, J. Opt. Soc. Amer. B 8 (1991), 395–402.

    Google Scholar 

  32. Li, Q. Y., Sammut, R. A. & Pask, C.: Variational and finite element analyses of nonlinear strip optical waveguides, Opt. Comm. 94 (1992), 37–43.

    Google Scholar 

  33. Hayata, K. & Koshiba, M.: Solution of self-trapped multidimensional optical beams by Galerkin's method, Opt. Lett. 17 (1992), 841–843.

    Google Scholar 

  34. Akhmediev, N. N. & Ostrovokaya, N. V.: Stability of nonlinear waves in a symmetric planar waveguide, Sov. Phys. Tech. Phys. 33 (1988), 1333–1337.

    Google Scholar 

  35. Jones, C. K. R. T. & Moloney, J. V.: Instability of standing waves in nonlinear optical waveguides, Phys. Lett. A 117 (1986), 176–184.

    Google Scholar 

  36. Grillakis, M., Shatah, J. & Strauss, W.: Stability theory of solitary waves in the presence of symmetry, 1, J. Functional Anal. 74 (1987), 160–197.

    Google Scholar 

  37. Etrich, C. M., Moloney, J. V. & Jones, C. K. R. T.: Analysis and stability of nonlinear guided waves in saturable self-focusing and self-defocusing thin-film dielectric media, to appear 1993.

  38. Aceves, A. B., Moloney, J. V. & Newell, A. C.: Theory of light-beam propagation at nonlinear interfaces I, Phys. Rev. A 39 (1989), 1802–1823.

    Google Scholar 

  39. Tran, H. T.: Stability of bright TE waves in slab waveguides with a self-defocusing bounding medium, Opt. Lett. 17 (1992), 1767–1769.

    Google Scholar 

  40. Hart, D. & Wright, E. M.: Stability of a TE0 guided wave of a nonlinear waveguide with a self-defocusing medium, Opt. Lett. 17 (1992), 121–123.

    Google Scholar 

  41. Maneuf, S., Desailly, R. & Froehley, C.: Stable self-trapping of laser beams, observation in a nonlinear planar waveguide, Opt. Comm. 65 (1988), 193–198.

    Google Scholar 

  42. Aitchison, J. S., Weiner, A. M., Silberbery, Y., Oliver, M. K., Jackel, J. L., Leaird, D. E., Vogel, E. M. & Smith, P. W. E.: Observation of spatial optical solitons in a nonlinear glass waveguide, Opt. Lett. 15 (1990), 471–473.

    Google Scholar 

  43. Hayata, K., Koshiba, M. & Suzuki, M.: Finite element solution of arbitrarily nonlinear, graded-index slab slab waveguides, Electron. Lett. 23 (1987), 429–431.

    Google Scholar 

  44. Torner, L. & Torres, J. P.: Similarity rules for nonlinear Kerr-like slab optical waveguides, IEEE J. Quant. Elect. 28 (1992), 1571–1581.

    Google Scholar 

  45. Enns, R. H., Rangnekar, D. D. & Kaplan, A. E.: Robust bistable solitons of the highly nonlinear Schrodinger equation, Phys. Rev. A 33 (1987), 466–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Ball

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuart, C.A. Guidance properties of nonlinear planar waveguides. Arch. Rational Mech. Anal. 125, 145–200 (1993). https://doi.org/10.1007/BF00376812

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376812

Keywords

Navigation