Skip to main content
Log in

Synthesis and stability relations of wairakite, CaAl2 Si4 O12·2H2O

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Hydrothermal investigation of the bulk composition CaO·Al2O3·4SiO2 + excess H2O has been conducted using conventional techniques over the temperature range 200–500° C and 500–5,000 bars P fluid. The fully ordered wairakite was synthesized unequivocally in the laboratory, probably for the first time.

The gradual, sluggish and continuous transformation from disordered to ordered wairakite evidently accounts for failure by previous investigators to synthesize ordered wairakite in runs of week-long duration. The dehydration of metastable disordered wairakite to metastable hexagonal anorthite, quartz and H2O has been determined; this reaction takes place at temperatures exceeding 400° C, even at fluid pressures of 500 bars or less. The upper P fluid-T boundary of the disordered phase is equivalent to the maximum temperature curve of synthetic wairakite presented by previous investigators. The hydrothermal breakdown of natural wairakite above its stability limit appears to be a very slow process.

The equilibrium dehydration of wairakite to anorthite, quartz and H2O occurs at 330±5° C at 500 bars, 348±5° C at 1,000 bars, 372±5° C at 2,000 bars and 385±5° C at 3,000 bars. Where fluid pressure equals total pressure, the thermal stability range of wairakite is about 100° C wide. At lower temperatures wairakite reacts with H2O to form laumontite. Reconnaissance experiments dealing with the effect of CO2 on stabilities of calcium zeolites suggest that wairakite or laumontite may be replaced by the assemblage calcite + montmorillonite in the presence of a CO2-bearing fluid phase.

The determined P fluid -T field of wairakite is compatible with field observations in some metamorphic terrains where it is related to the shallow emplacement of granitic magma and with direct pressure-temperature measurements in certain active geothermal areas. Under inferred conditions of higher μCO2H2O ratios, essentially unmetamorphosed rocks grade directly into those characteristic of the greenschist facies; moderately high values of μCO2 in carbonate-bearing rocks result in the downgrade extension of the greenschist facies at the expense of zeolite-bearing assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albee, A. L., Zen, E-An: Dependence of the zeolitic facies on the chemical posentials of CO2 and H2O. In: Zharikov, V. A., et al., ed., Phys. Chem. Petrol. vol. I., Akad. Nauk, U.S.S.R. 249–260 (1969) [in Russian].

  • Ames, L.L., Sand, L.B.: Hydrothermal synthesis of wairakite and calcium-mordenite. Am. Mineralogist 43, 476–480 (1958).

    Google Scholar 

  • Barrer, R.M., Denny, P.J.: Hydrothermal chemistry of the silicates. Part X. A partial study of the field CaO-Al2O3-SiO2-H2O. J. Chem. Soc. (Lond.) 983–1000 (1961).

  • Brown, C.E., Thayer, T.P.: Low-grade mineral facies in Upper Triassic and Lower Jurassic rocks of the Aldrich Mountains, Oregon. J. Sediment. Petrol. 33, 411–425 (1963).

    Google Scholar 

  • Campbell, A.S., Fyfe, W.S.: Analcime-albite equilibria. Am. J. Sci. 263, 807–816 (1965).

    Google Scholar 

  • Clark, S.P.: A note on calcite-aragonite equilibrium. Am. Mineralogist 42, 564–566 (1957).

    Google Scholar 

  • Coombs, D. S.: X-ray observations on wairakite and non-cubic analcime. Mineral. Mag. 30, 699–708 (1955).

    Google Scholar 

  • —: Lower grade mineral facies in New Zealand. 21st Internat. Geol. Congr., Copenhagen Proc. Sec. 13, 339–351 (1960).

    Google Scholar 

  • —: Some recent work on the lower grades of metamorphism. Australian J. Sci. 24, 203–215 (1961).

    Google Scholar 

  • —, Ellis, A.J., Fyfe, W.S., Taylor, A.M.: The zeolite facies. With comments on the interpretation of hydrothermal syntheses. Geochim. Cosmochim. Acta 17, 53–107 (1959).

    Google Scholar 

  • —, Horodyski, R.J., Naylor, R.S.: Occurrence of prehnite-pumpellyite facies metamorphism in Northern Maine. Am. J. Sci. 268, 142–156 (1970).

    Google Scholar 

  • Davis, G.L., Tuttle, O.F.: Two new crystalline phases of the anorthite composition, CaO-Al2O3·2SiO2. Am. J. Sci. Bowen Vol. 250, 107–114 (1952).

    Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J.: Rock-forming minerals. Vol. 4. Framework silicates. 435 p. New York: John Wiley & Sons, Inc. 1963.

    Google Scholar 

  • Donnelly, T.W.: Wairakite in West Indian splitic rocks. Am. Mineralogist 47, 794–802 (1962).

    Google Scholar 

  • Eugster, H.P., Skippen, G.B.: Igneous and metamorphic reactions involving gas equilibria. In: P. H. Abelson, Researches in geochemistry, p. 492–520. New York: John Wiley & Sons 1967.

    Google Scholar 

  • —, Wones, D.R.: Stability relations of the ferruginous biotite, annite. J. Petrol. 3, 82–125 (1962).

    Google Scholar 

  • Fiske, R.S., Hopson, C.A., Waters, A.C.: Geology of the Mount Ramier National Park, Washington. U.S. Geol. Sur. Profess. Papers 444, 93 p. (1963).

  • French, B.M.: Some geologic implications of equilibrium between graphite and a C-O-H gas phase of high temperatures and pressures. Rev. Geophys. 4, 223–253 (1966).

    Google Scholar 

  • Gilbert, M.C.: Synthesis and stability relations of the hornblende ferropargasite. Am. J. Sci. 264, 698–742 (1966).

    Google Scholar 

  • Goldsmith, J.R., Ehlers, E.G.: Anorthite and its hexagonal polymorph. J. Geol. 60, 386–397 (1952).

    Google Scholar 

  • Gordon, T. M.: The stability of grossularite in H2O-CO2 mixtures. Geol. Soc. America annual meeting (1969). (abstr.).

  • Harada, K., Tomita, K.: A sodian stilbite from Onigajo Mie Prefecture, Japan, with some experimental studies concerning the conversion of stilbite to wairakite at low water vapor pressures. Am. Mineralogist 52, 1438–1450 (1967).

    Google Scholar 

  • Jamieson, J.C.: Phase equilibria in the system calcite-aragonite. J. Chem. Phys. 21, 1385–1390 (1953).

    Google Scholar 

  • Koizumi, M., Roy, R.: Zeolite studies. I. Synthesis and stability of the calcium zeolites. J. Geol. 68, 41–53 (1960).

    Google Scholar 

  • Liou, J. G.: Stability relations of zeolites and related minerals in the system CaO-Al2O3-SiO2-H2O. Ph. D. thesis. Univ. California, Los Angeles, 295 p. (1970).

    Google Scholar 

  • - P-T stabilities of laumontite, wairakite and lawsonite in the system CaAl2Si2O8-SiO2-H2O. J. Petrol. (in press).

  • - Synthesis and stability relations of prehnite Ca2Al2Si3O10(OH)2. (In preparation.)

  • - Ernst, W. G.: Zeolite equilibria in the system CaO·Al2O3·2SiO2-SiO2-H2O, the stabilities of wairakite and laumontite. Isvest. Akad. Nauk, U.S.S.R. Earth Sci. Sect. (in press).

  • Maegdefrau, E. von, Hofmann, U.: Die Kristallstruktur des Montmorillonites. Z. Krist. 98, 299–323 (1937).

    Google Scholar 

  • Mahon, W. A. J.: Natural hydrothermal systems and the reaction of hot water with sedimentary rocks. New Zealand J. Sci. 10, 206–221 (1967).

    Google Scholar 

  • Martin, R. F.: The synthesis of low albite. Trans. Am. Geophys. Union 48, 225 (1967).

    Google Scholar 

  • McNamara, M.: The lower greenschist facies in the Scottish Highlands. Geol. Foren Stockholm Forh. 87, 347–389 (1965).

    Google Scholar 

  • Muffler, L. J. P., White, D. E.: Active metamorphism of Upper Cenozoic sediments in the Salton geothermal field and the Salton trough, southeastern California. Bull. Geol. Soc. Am. 80, 157–182 (1969).

    Google Scholar 

  • Newton, R. C.: Some calc-silicate equilibrium relations. Am. J. Sci. 264, 204–222 (1966).

    Google Scholar 

  • —, Kennedy, G. C.: Some equilibrium reactions in the join CaAl2Si2O8-H2O. J. Geophys. Res. 68, 2967–2983 (1963).

    Google Scholar 

  • —, Smith, J. V.: Investigations concerning the breakdown of albite at depth in the earth. J. Geol. 75, 268–286 (1967).

    Google Scholar 

  • Nitsch, K. H.: Die Stabilität von Lawsonit. Naturwissenschaften 55, 388 (1968).

    Google Scholar 

  • Noboko, S. I.: Hydrothermal metamorphism of rocks in volcanic regions. Moscow Press. Acad. Sci. U.S.S.R. (1963) [in Russian].

  • Norton, F. H.: Hydrothermal formation of clay minerals in the laboratory. Am. Mineralogist 24, 1–17 (1939).

    Google Scholar 

  • Perrotta, A. J.: The crystal structure of epistilbite. Mineral. Mag. 36, 480–490 (1967).

    Google Scholar 

  • Raase, P., Kern, H.: Über die Synthese von Albiten bei Temperaturen von 250 bis 700° C. Contr. Mineral. and Petrology 21, 225–237 (1969).

    Google Scholar 

  • Roy, R., Osborn, E. F.: The system Al2O3-SiO2-H2O. Am. Mineralogist 39, 853–885 (1954).

    Google Scholar 

  • Seki, Y.: Wairakite in Japan. J. Japan. Assoc. Mineral. Petr. Econ. Geol. 56, 254–261, 30–39 (1966).

    Google Scholar 

  • —: Synthesized wairakites: their difference from natural wairakites. J. Geol. Soc. Japan 74, 457–458 (1968).

    Google Scholar 

  • —, Oki, Y., Masuda, T., Mikami, K., Okumura, K.: Metamorphism in the Tanzawa Mountains, Central Japan. J. Japan. Assoc. Mineral. Petr. Econ. Geol. 61, 1–75 (1969).

    Google Scholar 

  • —, Okumura, K.: Yugawaralite from Onikobe active geothermal area, Northeast Japan. J. Japan. Assoc. Mineral. Petr. Econ. Geol. 60, 27–33 (1968).

    Google Scholar 

  • —, Takayasu, T., Nakajima, M., Onuki, H.: Wairakite from Hanawa Mining District, Northern Japan. J. Japan. Assoc. Mineral. Petr. Econ. Geol. 59, 236–245 (1968).

    Google Scholar 

  • Steiner, A.: Wairakite, the calcium analogue of analcime, a new zeolite mineral. Mineral. Mag. 30, 691–698 (1955).

    Google Scholar 

  • —: Occurrence of wairakite at the Geysers, California. Am. Mineralogist 43, 781 (1958).

    Google Scholar 

  • Stewart, D. B.: Four-phase curve in the system CaAl2Si2O8-SiO2-H2O between 1 and 10 kilobars. Schweiz. Mineral. Petrog. Mitt. 47, 35–59 (1967).

    Google Scholar 

  • Strunz, H., Tennyson, C.: “Polymorphie” in der Gruppe der Blätterzeolithe. Neues Jahrb. Mineral. Monatschr. 11, 1–9 (1956).

    Google Scholar 

  • Sumi, K.: Altered rocks containing laumontite from a high heat-flow area, near Matsukawa. J. Geol. Soc. Japan 73, 86 (1967). (abstr.) [Japanese].

    Google Scholar 

  • Surdam, R. C.: Low-grade metamorphism of the Karmutsen Group, Buttle Lake Area, Vancouver Island, B. C. Ph. D. thesis Univ. of California, Los Angeles, 313 p. (1967).

    Google Scholar 

  • Tuttle, O. F., Bowen, N. L.: High temperature albite and contiguous feldspars. J. Geol. 58, 572–583 (1950).

    Google Scholar 

  • Whetten, J. T.: Wairakite from low-grade metamorphic rocks on St. Croix, U.S. Virgin Islands. Am. Mineralogist 50, 752–755 (1965).

    Google Scholar 

  • Wise, W. S.: Occurrence of wairakite in metamorphic rocks of the Pacific Northwest. Am. Mineralogist 44, 1099–1101 (1959).

    Google Scholar 

  • Zen, E-An: Clay mineral-carbonate relations in sedimentary rocks. Am. J. Sci. 257, 29–43 (1959).

    Google Scholar 

  • —: The zeolite facies: an interpretation. Am. J. Sci. 259, 401–409 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liou, J.G. Synthesis and stability relations of wairakite, CaAl2 Si4 O12·2H2O. Contr. Mineral. and Petrol. 27, 259–282 (1970). https://doi.org/10.1007/BF00389814

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00389814

Keywords

Navigation