Skip to main content
Log in

Modelling moisture-related mechanical properties of wood Part I: Properties of the wood constituents

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

By starting with simple concepts of the molecular structure and building up through the various levels of organisation in the wood cell wall it is possible to construct a model that simultaneously predicts the variation with moisture content change of both the longitudinal Young's modulus and longitudinal shrinkage of wood. To do this it is first necessary to define the stiffness and swelling characteristics of the lignin, hemicellulose and cellulose constituents of the wood as moisture content changes. It is suggested here that it is the bound fraction of the sorbed water that is responsible for the changes in swelling stress as well as for change in stiffness in the lignin and hemicellulose. The magnitudes of the stiffness of each of the constituents appear to be quite closely circumscribed by experimental values for longitudinal Young's modulus and shrinkage of wood and it is apparent that the stiffness characteristics of the in situ constituents are compatible with available experimental evidence for extracted lignin and hemicellulose and for native cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barrett, J. D.; Schniewind, A. P.; Taylor, R. L. 1972. Theoretical shrinkage model for wood cell walls. Wood Sci. 4 (3): 178–192

    Google Scholar 

  • Barber, N. F.; Meylan, B. A. 1964 The anisotropic shrinkage of wood. Holzforschung 18: 146–156

    Google Scholar 

  • Barber, N. F. 1968. A theoretical model of shrinking wood. Holzforschung 22: 97–103

    Google Scholar 

  • Cave, I. D. 1968. Anisotropic elasticity of the plant cell-wall. Wood Sci. Technol. 2: 268–278

    Google Scholar 

  • Cave, I. D. 1972. A theory of the shrinkage of wood. Wood Sci. Technol. 6: 284–292

    Google Scholar 

  • Cave, I. D. 1973. Mechanical properties of fibre reinforced materials-the wood-water system. Ph.D. thesis, Victoria University of Wellington, N.Z.

    Google Scholar 

  • Cave, I. D. 1975. Wood substance as a water reactive fibre reinforced composite. J. Microscopy 104: Pt. 1, 47–52

    Google Scholar 

  • Cave, I. D. 1976. Modelling the structure of the softwood cell wall for computation of mechanical properties. Wood Sci. Technol. 10: 19–28

    Google Scholar 

  • Cousins, W. J. 1976. Elastic modulus of lignin as related to moisture content. Wood Sci. Technol. 10: 9–17

    Google Scholar 

  • Cousins, W. J. In press. Young's modulus of hemicellulose as related to moisture content

  • Dunning, C. E. 1968. Cell-wall morphology of longleaf pine latewood. Wood Sci. 1: 65–76

    Google Scholar 

  • Fergus, B. J.; Procter, A. R.; Scott, J. A. N.; Goring, D. A. I. 1969. The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci. Technol. 3: 117–138

    Google Scholar 

  • Frey-Wyssling, A. 1964. Optics of lignified cell-walls. In: The formation of wood in forest trees. Ed. M. H. Zimmermann. Academic Press, New York

    Google Scholar 

  • Fushitani, M. 1973. Study of molecular orientation in wood by fluorescence method. Mokuzai Gakaishi (J. Japan Wood Res. Soc.) 19: 135–140

    Google Scholar 

  • Gillis, P. P. 1969. Effect of hydrogen bonds on the axial stiffness of crystalline native cellulose. J. Polymer Sci. A-27: 783–794

    Google Scholar 

  • Goring, D. A. I. 1971. Lignin polymer in wood. In Lignins, Occurrence, Formation, Structure and Reactions. Ed. K. V. Sarkanen, C. H. Ludwig, Wiley Interscience, New York

    Google Scholar 

  • Goulet, M. 1968. Phenomènes de second ordre de la sorption d'humidité dans le bois au terme d'un conditionnement de trois mois à temperature normale. Note de recherche No. 3. Department d'exploitation et utilisation des bois, Faculté de foresterie et géodésie, Université de Laval, Québec

    Google Scholar 

  • Hepler, P. K.; Fosket, D. F.; Newcomb, F. H. 1970. Lignification during secondary wall formation in Coleus. Am. J. Bot. 57: 85–96

    Google Scholar 

  • Hill, R. 1965. Mechanical theory of fibre strengthened materials, II Self consistent model. J. Mech. Phys. Solids 13: 189–198

    Article  Google Scholar 

  • Jaswon, M. A.; Gillis, P. P.; Mark, R. E. 1968. The elastic constants of crystalline native cellulose. Proc. Roy. Soc. A 306: 389–412

    Google Scholar 

  • Kauman, W. G. 1965. Deformation and setting of the wood cell wall. Holz Roh- Werkstoff 24 (11): 551–556

    Google Scholar 

  • Keegstra, K.; Talmadge, K. W.; Bauer, W. D.; Albersheim, P. 1973. The structure of plant cell walls III: A model of the walls of suspension cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51: 188–196

    Google Scholar 

  • Kelsey, K. E.; Clarke, L. N. 1956. The heat of sorption of water by wood. Austral. J. App. Sci. 7: 160–175

    Google Scholar 

  • Kelsey, K. E. 1967. The sorption of water vapour by wood. Austral. J. Appl. Sci. 8: 40–54

    Google Scholar 

  • Kelsey, K. E.; Christensen, G. N. 1959. The sorption of water vapour by the constituents of wood II: Heats of Sorption. Austral. J. Appl. Sci. 10: 260–293

    Google Scholar 

  • Landolt-Börnstein. 1969. Numerical data and functional relationships in science and technology, Group III, Vol. 2. Berlin, Heidelberg: Springer-Verlag

    Google Scholar 

  • Mark, R. E. 1967. Cell wall mechanics of tracheids. Yale University Press, New Haven

    Google Scholar 

  • Meylan, B. A. 1972. The influence of microfibril angle on the longitudinal shrinkage—moisture content relationship. Wood Sci. Technol. 6: 293–301

    Google Scholar 

  • Nye, J. F. 1957. Physical properties of crystals. University Press, Oxford

    Google Scholar 

  • Peirce, F. T. 1929. A two-phase theory of the adsorption of water vapour by cotton cellulose. J. Text Inst. 20: T133–150

    Google Scholar 

  • Preston, R. D.; Cronshaw, J. 1958. Constitution of the fibrillar and non-fibrillar components of the walls of Valonia ventricosa. Nature 181, 248–250

    Google Scholar 

  • Sakurada, I.; Nukushina, Y., Ito, T. 1962. Experimental determination of the elastic modulus of the crystalline region of oriented polymers. J. Polym. Sci. 57: 651–660

    Article  Google Scholar 

  • Spalt, H. A. 1958. The fundamentals of water vapour sorption by wood. Forest Prod. J. 8: 288–295

    Google Scholar 

  • Stamm, A. J.; Smith, W. E. 1969. Laminar sorption and swelling theory for wood and cellulose. Wood Sci. Technol. 3: 301–323

    Google Scholar 

  • Treloar, L. R. G. 1960. Calculations of elastic moduli of polymer crystals. III Cellulose. Polymer 1: 290–303

    Article  Google Scholar 

  • Venkateswaran, A. 1970. Sorption of aqueous and non-aqueous media by wood and cellulose. Chem. Revs. 70: 619–637

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cave, I.D. Modelling moisture-related mechanical properties of wood Part I: Properties of the wood constituents. Wood Sci.Technol. 12, 75–86 (1978). https://doi.org/10.1007/BF00390012

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390012

Keywords

Navigation