Skip to main content
Log in

Intracellular appearance of nitrite and nitrate in nitrogen-starved cells of Ankistrodesmus braunii

  • Published:
Planta Aims and scope Submit manuscript

Summary

The occurrence of heterotrophic nitrification in nitrogen-starved cells of Ankistrodesmus braunii was confirmed. The levels of nitrate and nitrite were measured over a period of four weeks. The validity of quantitative determinations in the presence of highly active nitrate and nitrite reductases is discussed. Whereas free hydroxylamine as an intermediate could not be detected, increased hydroxylamine oxidase activity was found in nitrogen-starved cultures. Nitrite reductase and hydroxylamine oxidase can be assigned to particles by sucrose density gradient centrifugation. The possible involvement of microbodies, which were found to be present in Ankistrodesmus, in metabolic processes during nitrogen starvation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NR:

nitrate reductase

NiR:

nitrite reductase

NNEDA:

N-(1-naphthyl)ethylenediaminedihydrochloride

DCPIP:

2,6-dichlorophenolindophenol

EDTA:

ethylenediaminetetraacetic acid

TCA:

trichloroacetic acid

DAB:

3,3′-diaminobenzidine

AT:

3-amino-1H-1,2,4-triazole

AMP:

2-amino-2-methyl-1,3-propanediol

References

  • Ahmed, J., Spiller, H.: Purification and some properties of nitrate reductase from Ankistrodesmus braunii. Plant Cell Physiol. (in press)

  • Allen, J.F., Hall, D.O.: The relationship of oxygen uptake to electron transport in photosystem I of isolated chloroplasts: The role of superoxide and ascorbate. Biochem. biophys. Res. Commun. 58, 579–585 (1974)

    PubMed  Google Scholar 

  • Ben-Hayyim, G., Drechsler, Z., Goffer, J., Neumann, J.: Diaminobenzidine an electron donor to photosystem I and to photosystem 2 in chloroplasts. Europ. J. Biochem. 52, 135–141 (1975)

    PubMed  Google Scholar 

  • Böger, P.: Das Strukturproteid aus Chloroplasten einzelliger Grünalgen und seine Beziehung zum Chlorophyll. Flora (Jena) 154, 174–211 (1964)

    Google Scholar 

  • Codd, G.A., Schmid, G.H., Kowallik, W.: Further enzymic studies and electron microscopy of the microbodies of a mutant of Chlorella vulgaris. Arch. Mikrobiol. 92, 21–38 (1973)

    PubMed  Google Scholar 

  • Cresswell, C.F., Hewitt, E.J.: Oxidation of hydroxylamine by plant enzyme systems. Biochem. biophys. Res. Commun. 3, 544–548 (1960)

    PubMed  Google Scholar 

  • Elstner, E.F., Heupel, A.: Lamellar superoxide dismutase of isolated chloroplasts. Planta 123, 145–154 (1975)

    Google Scholar 

  • Elstner, E.F., Heupel, A., Vaklinova, S.: Über die Oxidation von Hydroxylamin durch isolierte Chloroplasten und die mögliche Funktion einer Peroxidase aus Spinatblättern bei der Oxidation von Ascorbinsäure und Glykolsäure. Z. Pflanzenphysiol. 62, 184–200 (1970)

    Google Scholar 

  • Fahimi, H.D., Herzog, V.: A colorimetric method for measurement of the (peroxidase-mediated) oxidation of 3,3′-diaminobenzidine. J. Histochem. Cytochem. 21, 499–502 (1973)

    PubMed  Google Scholar 

  • Frenyó, V.: The formation of nitrate in plant tissues. Ann. Univ. Sci. Budapest., Sect. Biol. 8, 77–85 (1966)

    Google Scholar 

  • Frenyó, V., Mihályfi, J.P.: Reoxydation des Stickstoffes in Sinapis-Keimpflanzen. Acta. bot. Acad. Sci. Hungar. 16, 33–36 (1970)

    Google Scholar 

  • Gerhardt, B., Berger, C.: Microbodies und Diaminobenzidin-Reaktion in den Acetat-Flagellaten Polytomella caeca und Chlorogonium elongatum. Planta 100, 155–166 (1971)

    Google Scholar 

  • Gromov, B.V., Mamkaeva, K.A., Vasilieva, V.E.: Morphology and ultrastructure of some chlorococcal algae from the collection of algal strains in Leningrad University. II. Monoraphidium braunii (Näg. in Kütz.) Komárková-Legnerová strain (Gromov) 1967/231. Algological Studies 11, 140–150 (1974)

    Google Scholar 

  • Hewitt, E.J., Nicholas, D.J.D.: Enzymes of inorganic nitrogen metabolism. In: Modern methods of plant analysis, vol. 7, p. 67–172, Paech, K., Tracey, M.V. (eds.) Berlin-Göttingen-Heidelberg-New York: Springer 1964

    Google Scholar 

  • Kaplan, D., Roth-Bejerano, N., Lips, H.: Nitrate reductase as a product-inducible enzyme. Europ. J. Biochem. 49, 393–398 (1974)

    Google Scholar 

  • Kessler, E., Oesterheld, H.: Nitrification and induction of nitrate reductase in nitrogen-deficient algae. Nature 228, 287–288 (1970)

    PubMed  Google Scholar 

  • Lips, S.H., Kaplan, D., Roth-Bejerano, N.: Studies on the induction of nitrate reductase by nitrite in bean-seed cotyledons. Europ. J. Biochem. 37, 589–592 (1973)

    PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    PubMed  Google Scholar 

  • Lück, H.: Katalase. In: Methoden der enzymatischen Analyse, p. 885–894, Bergmeyer, H.U. (ed.) Weinheim: Verlag Chemie 1962

    Google Scholar 

  • Marshall, K.C., Alexander, M.: Nitrification by Aspergillus flavus. J. Bacteriol. 83, 572–578 (1962)

    PubMed  Google Scholar 

  • Molina, J.A.E., Alexander, M.: Oxidation of nitrite and hydroxylamine by Aspergillus flavus, peroxidase and catalase. Antonie van Leeuwenhoek 38, 505–512 (1972)

    Google Scholar 

  • Morris, I., Syrett, P.J.: The effect of nitrogen starvation on the activity of nitrate reductase and other enzymes in Chlorella. J. gen. Microbiol. 38, 21–28 (1965)

    PubMed  Google Scholar 

  • Muhammad, S., Kumazawa, K.: Assimilation and transport of nitrogen in rice. I. 15N-labelled ammonium nitrogen. Plant Cell Physiol. 15, 747–758 (1974)

    Google Scholar 

  • Myers, J., Cramer, M.: Metabolic conditions in Chlorella. J. gen. Physiol. 32, 103–110 (1948)

    Article  Google Scholar 

  • Nelson, E.B., Tolbert, N.E.: Glycolate dehydrogenase in green algae. Arch. Biochem. Biophys. 141, 102–110 (1970)

    PubMed  Google Scholar 

  • Oakley, B.R., Dodge, J.D.: The ultrastructure and cytochemistry of microbodies in Porphyridium. Protoplasma 80, 233–244 (1974)

    PubMed  Google Scholar 

  • Oesterheld, H.: Das Verhalten von Nitratreductase, Nitritreductase, Hydrogenase und anderen Enzymen von Ankistrodesmus braunii bei Stickstoffmangel. Arch. Mikrobiol. 79, 25–43 (1971)

    Google Scholar 

  • Richardson, M.: Microbodies (glyoxisomes and peroxisomes) in plants. Sci. Progr. 61, 41–61 (1974)

    Google Scholar 

  • Rigano, C., Aliotta, G., Violante, U.: Presence of high levels of nitrate reductase activity in Cyanidium caldarium grown on glutamate as the sole nitrogen source. Plant Sci. Letters 2, 277–281 (1974)

    Google Scholar 

  • Schnarrenberger, C., Oeser, A., Tolbert, N.E.: Development of microbodies in sunflower cotyledons and castor bean endosperm during germination. Plant Physiol. 48, 566–574 (1971)

    Google Scholar 

  • Scholl, R.L., Harper, J.E., Hageman, R.H.: Improvements of the nitrite color development in assays of nitrate reductase by phenazine methosulfate and zinc acetate. Plant Physiol. 53, 825–828 (1974)

    Google Scholar 

  • Silverberg, B.A.: An ultrastructural and cytochemical characterization of microbodies in the green algae. Protoplasma 83, 269–295 (1975)

    PubMed  Google Scholar 

  • Snell, F.D., Snell, C.T.: In: Colorimetric methods of analysis, 3rd ed., vol. II, p. 785–807. Princeton: Van Nostrand 1949

    Google Scholar 

  • Stabenau, H.: Verteilung von Microbody-Enzymen aus Chlamydomonas in Dichtegradienten. Planta 118, 35–42 (1974)

    Google Scholar 

  • Syrett, P.J.: The assimilation of ammonia and nitrate by nitrogenstarved cells of Chlorella vulgaris. II. The assimilation of large quantities of nitrogen. Physiol. Plant. 9, 19–27 (1956)

    Google Scholar 

  • Syrett, P.J., Hipkin, C.R.: The appearance of nitrate reductase activity in nitrogen-starved cells of Ankistrodesmus braunii. Planta 111, 57–64 (1973)

    Google Scholar 

  • Tolbert, N.E.: Microbodies—peroxisomes and glyoxysomes. Ann. Rev. Plant Physiol. 22, 45–74 (1971)

    Article  Google Scholar 

  • Tolbert, N.E., Oeser, A., Yamazaki, R.K., Hageman, R.H., Kisaki, T.: A survey of plants for leaf peroxisomes. Plant Physiol. 44, 135–147 (1969)

    PubMed  Google Scholar 

  • Vennesland, B., Jetschmann, C.: The nitrate reductase of Chlorella pyrenoidosa. Biochim. biophys. Acta (Amst.) 227, 554–564 (1971)

    Google Scholar 

  • Vigil, E.L.: Plant microbodies. J. Histochem. Cytochem. 21, 958–962 (1973)

    PubMed  Google Scholar 

  • Vinayakumar, M., Kessler, E.: Physiological and biochemical contributions to the taxonomy of the genus Chlorella. X. Products of glucose fermentation. Arch. Microbiol. 103, 13–19 (1975)

    PubMed  Google Scholar 

  • Yamafuji, K., Osajima, Y.: Dehydrogenation of ammonia to nitrate by enzymes isolated from green algae. Enzymologia 26, 75–86 (1963)

    PubMed  Google Scholar 

  • Zumft, W.G.: Ferredoxin: nitrite oxidoreductase from Chlorella. Purification and properties. Biochim. biophys. Acta (Amst.) 276, 363–375 (1972)

    Google Scholar 

  • Zumft, W.G., Paneque, A., Aparicio, P.J., Losada, M.: Mechanism of nitrate reduction in Chlorella. Biochem. biophys. Res. Commun. 36, 980–986 (1969)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiller, H., Dietsch, E. & Kessler, E. Intracellular appearance of nitrite and nitrate in nitrogen-starved cells of Ankistrodesmus braunii . Planta 129, 175–181 (1976). https://doi.org/10.1007/BF00390025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390025

Keywords

Navigation