Skip to main content
Log in

Spectral properties and photosynthetic action in red-tide populations of Prorocentrum micans and Gonyaulax polyedra

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Spectral attenuance and photosynthetic performance over the range 300 to 700 nm were examined in red-tide populations of Prorocentrum micans and Gonyaulax polyedra collected off La Jolla, California, USA, in May 1969 and May–June 1985; and in spring 1969, November 1981 and April–May 1982, respectively. In the near ultraviolet (UV), high attenuance and diminished photosynthetic effectiveness were observed in both dinoflagellates. This decline in relative quantum yield is ascribed to masking absorption by unidentified and spectrally different UV-absorbing compounds which were soluble in methanol. In the visible region, photosynthetic action spectra displayed the characteristic shapes expected from efficient Photosystem II light harvesting by peridinin, chlorophylls a and c 2 , in conformity with previous studies on cultured dinoflagellates. In the case of P. micans, a high content of diadinoxanthin was found and the possible role of this yellow xanthophyll as a photoprotective pigment is discussed. However, photosynthetic enhancement spectra suggest that some portion of the diadinoxanthin pool functions as a Photosystem I antenna in this species. Our data on P. micans and G. polyedra support the hypothesis that UV-absorbing compounds and diadinoxanthin play protective roles in screening harmful radiation in red-tide dinoflagellates exposed to high-light conditions in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Anderson, J. M., Waldron, J. C., Thorne, S. W. (1978): Chlorophyll-protein complexes of spinach and barley thylakoids. Fedn eur. biochem. Soc. (FEBS) Lett. 92: 227–233

    Google Scholar 

  • Avaría, P. S. (1982). Fenómenos de marea roja en el mar de Chile. Cienc. Tecnol. mar (Valparaiso) 6: 117–127

    Google Scholar 

  • Balch, W. W., Haxo, F. T. (1984) Spectral properties of Noctiluca miliaris Surinay, a heterotrophic dinoflagellate. J. Plankton Res. 6: 515–525

    Google Scholar 

  • Carreto, J. I., De Marco, S., Lutz, V. (1988) UV-absorbing pigments in the dinoflagellates Alexandrium excavatum and Prorocentrum micans. Effects of light intensity. In: Okaici, T., Anderson, D. M., Nemoto, T. (eds.) Red tides: biology, environmental science and toxicology. Elsevier, New York, p. 331–335

    Google Scholar 

  • Cassie, V. (1981). Non-toxic blooms of Prorocentrum micans (Dinophyceae) in the Karamea Bight. N. Z. Jl mar. Freshwat. Res. 15: 181–184

    Google Scholar 

  • Davies, B. H. (1976). Carotenoids. In: Goodwin, T. W. (ed.) Chemistry and biochemistry of plant pigments. Vol. II 2nd. ed., Chapter 19. Academic Press, London/New York, p. 38–165

    Google Scholar 

  • Dunlap, W. C., Chalker, B. E., Oliver, J. K. (1986). Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J. exp. mar. Biol. Ecol. 104: 239–248

    Google Scholar 

  • Eppley, R. W., Harrison, W. G. (1975). Physiological ecology of Gonyaulax polyedra, a red water dinoflagellate of Southern California. In: LoCicero, V. R. (ed.) Proceedings of the First International Conference on Toxic Dinoflagellate Blooms. Massachussetts Science & Technology Foundation, Wakefield, Massachussetts, p. 11–22

    Google Scholar 

  • Goodwin, T. W. (1980). The biochemistry of the carotenoids. Vol. I. Chapman & Hall, London/New York

    Google Scholar 

  • Harvey, G. W. (1966) Microlayer collection from the sea surface: a new method and initial results. Limnol. Oceanogr. 11: 608–613

    Google Scholar 

  • Hata, M., Abe, S., Hata, M. (1982). Occurrence of pendinin-chlorophyll a-protein complex in red tide dinoflagellate Prorocentrum micans. Bull. Jap Soc. scient. Fish. 48: 459–461

    Google Scholar 

  • Hattori, H., Yuki, K. Zaitsev, Y. P., Motoda, S. (1983) A preliminary observation on the neuston in Suruga Bay. La Mer (Bull. Soc. franco-jap. Océanogr., Tokyo) 21: 11–20

    Google Scholar 

  • Haxo, F. T. (1960). The wavelength dependence of photosynthesis and the role of accessory pigments. In: Allen, M. B. (ed.) Comparative biochemistry of photoreactive systems. Academic Press, New York, p. 339–360

    Google Scholar 

  • Haxo, F. T. (1980). Near-UV absorbance peak and photosynthesis in the marine dinoflagellate Gonyaulax catenella. Abstract, 8th Annual Meeting, American Society for Photobiology, Colorado Springs, Co., USA, p. 52

  • Haxo, F. T. (1985) Photosynthetic action spectrum of the coccolithophorid, Emiliania huxleyi (Haptophyceae): 19′hexanoyloxyfucoxanthin as antenna pigment. J. Phycol. 21: 282–287

    Google Scholar 

  • Haxo, F. T., Fork, D. C. (1959). Photosynthetically active accessory pigments of cryptomonads. Nature, Lond. 184: 1051–1052

    Google Scholar 

  • Haxo, F. T., Lewin, R. A., Lee, K. W., Li, M.-R. (1987) Fine structure and pigments of Oscillatoria (Trichodesmium) aff. thiebautii (Cyanophyta) in culture. Phycologia 26: 443–456

    Google Scholar 

  • Haxo, F. T., Neori, A., White, M. (1984). Photosynthetic action and absorbance spectra of chloromonads. Protozool. 31: p. 25A

  • Jeffrey, S. W. (1968). Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae. Biochim. biophys. Acta 162: 271–285

    Google Scholar 

  • Jeffrey, S. W., Haxo, F. T. (1968). Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biol. Bull. mar. biol. Lab., Woods Hole 135: 149–165

    Google Scholar 

  • Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194

    Google Scholar 

  • Jeffrey, S. W., Sielicki, M., Haxo, F. T. (1975). Chloroplast pigment patterns in dinoflagellates. J. Phycol. 11: 374–384

    Google Scholar 

  • Johansen, J. E., Svec, W. A., Liaaen-Jensen, S., Haxo, F. T. (1974). Carotenoids of the Dinophyceae. Phytochem. 13: 2261–2271

    Google Scholar 

  • Joliot, P. (1972). Modulated light source use with the oxygen electrode. Meth. Enzym. 24B: 123–134

    Google Scholar 

  • Krinsky, N. I. (1971). Function. In: Isler, O. (ed.) Carotenoids. Birkhauser Verlag, Basel and Stuttgart, p. 669–714

    Google Scholar 

  • Lewis, M. R., Warnock, R. E., Irwin, B., Platt, T. (1985). Measuring photosynthetic action spectra of natural phytoplankton populations. J. Phycol. 21: 310–315

    Google Scholar 

  • Loeblich, L. A. (1982). Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J. mar. biol. Ass. U.K. 62: 493–508

    Google Scholar 

  • Loeblich, A. R., Smith, V. E. (1968) Chloroplast pigments of the marine dinoflagellate Gyrodinium splendens. Lipids 3: 5–13

    Google Scholar 

  • Mandelli, E. F. (1972). The effect of growth illumination on the pigmentation of a marine dinoflagellate. J. Phycol. 8: 367–369

    Google Scholar 

  • Nelson, J. R. (1986). Phytoplankton carotenoids as organic tracers in marine particulate organic matter. Ph. D. thesis. University of California, San Diego

    Google Scholar 

  • Neori, A. (1986). Excitation spectra of chlorophyll a fluorescence in vivo: their correlation with photosynthetic action spectra and their use in the study of algal photoadaptation. Ph. D. thesis. University of California, San Diego, USA

    Google Scholar 

  • Neori, A., Holm-Hansen, O., Mitchell, B. G., Kiefer, D. A. (1984). Photoadaptation in marine phytoplankton: changes in spectral absorption and excitation of chlorophyll a fluorescence. Pl. Physiol. 76: 518–524

    Google Scholar 

  • Neori, A., Vernet, M., Holm-Hansen, O., Haxo, F. T. (1986). Relationship between action spectra for chlorophyll a fluorescence and photosynthetic O2 evolution in algae. J. Plankton Res. 8: 537–548

    Google Scholar 

  • Pinckard, J. H., Kittredge, J. S., Fox, D. L., Haxo, F. T., Zechmeister, L. (1953). Pigments from a marine “red water” population of the dinoflagellate Prorocentrum micans. Archs Biochem. Biophys. 44: 189–199

    Google Scholar 

  • Prézelin, B. B. (1976). The role of peridinin-chlorophyll a-proteins in the photosynthetic light adaptation of the marine dinoflagellate, Glenodinium sp. Planta 130: 225–233

    Google Scholar 

  • Prézelin, B. B. (1987). Photosynthetic physiology of dinoflagellates. Bot. Monogr. 21: 174–223

    Google Scholar 

  • Prézelin, B. B., Haxo, F. T. (1976). Purification and characterization of peridinin-chlorophyll a-proteins from the marine dinoflagellates Glenodinium sp. and Gonyaulax polyedra. Planta 128: 133–141

    Google Scholar 

  • Prézelin, B. B., Ley, A. C., Haxo, F. T. (1976). Effects of growth irradiance on the photosynthetic action spectra of the marine dinoflagellate, Glenodinium sp. Planta 130: 251–256

    Google Scholar 

  • Prézelin, B. B., Sweeney, B. M.: (1978). Photoadaptation of photosynthesis in Gonyaulax polyedra. Mar. Biol. 48: 27–35

    Google Scholar 

  • Pybus, C. (1984). Unusual concentrations of the dinoflagellate Ceratium tripos in Galway Bay. Ir. Nat. J. 21: 317–320

    Google Scholar 

  • Reid, F. M. H., Lange, C. B., White, M. M. (1985). Microplankton species assemblages at the Scripps Pier from March to November 1983 during the 1982–1984 El Niño event. Botanica mar. 28: 443–452

    Google Scholar 

  • Riley, J. P., Wilson, T. R. S. (1967). The pigments of some marine phytoplankton species. J. mar. biol. Ass. U.K. 47: 351–362

    Google Scholar 

  • Shibata, K. (1969). Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Pl. Cell. Physiol., Tokyo 10: 325–335

    Google Scholar 

  • Sivalingam, P. M., Ikawa, T., Yokohama, Y., Nizisawa, K. (1974). Distribution of a 334 UV-absorbing substance in algae, with special regard to its possible physiological roles. Botanica mar. 23–29

  • Sweeney, B. M. (1975). Red tides I have known. In: LoCicero, V. R. (ed.) Proceedings of the First International Conference on Toxic Dinoflagellate Blooms. Massachusetts Science & Technology Foundation, Wakefield, Massachussetts, p. 225–234

    Google Scholar 

  • Thornber, J. P., Alberte, R. S., Hunter, F. A., Shiozawa, J. A., Kan, K.-S. (1977). The organization of chlorophyll in the plant photosynthetic unit. Brookhaven Symp. Biol. 28: 132–148

    Google Scholar 

  • Withers, N., Cox, E. R., Thomas, R., Haxo, F. T. (1977). Pigments of the dinoflagellate Peridinium balticum and its photosynthetic endosymbiont. J. Phycol. 13: 354–358

    Google Scholar 

  • Wood, W. F. (1987). Effect of solar ultra-violet radiation on the kelp Ecklonia radiata. Mar. Biol. 96: 143–150

    Google Scholar 

  • Wood, W. F. (1989). Photoadaptive responses of the tropical red alga Eucheuma striatum Schmitz (Gigartinales) to ultra-violet radiation. Aquat. Bot. 33: 41–51

    Google Scholar 

  • Yentsch, C. S., Yentsch, C. M. (1982). The attenuation of light by marine phytoplankton with specific reference to the absorption of near-UV radiation. In: Calkins, J. (ed.) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York, p. 691–700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vernet, M., Neori, A. & Haxo, F.T. Spectral properties and photosynthetic action in red-tide populations of Prorocentrum micans and Gonyaulax polyedra . Mar. Biol. 103, 365–371 (1989). https://doi.org/10.1007/BF00397271

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397271

Keywords

Navigation