Skip to main content
Log in

A fast convenient method to prepare hybrid sol-gel materials with low volume-shrinkages

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We present a simple and fast method for the synthesis of polyacrylates-silica hybrid materials with significantly low volume shrinkages through the sol-gel reactions of tetraethyl orthosilicate and 2-hydroxyethyl methacrylate along with the free-radical polymerization of the acrylate monomer. The volume shrinkage from the processible sol to the final product was about 6–20% for the hybrid materials having the silica contents up to about 50 wt-%. As a result of the low shrinkage, crack-free, transparent and monolithic hybrid materials of relatively large sizes can be prepared within a short period of 6 to 12 hours. The formation of covalent bonding between the organic and the silica components in the hybrid materials was demonstrated. Thermal stability of the polyacrylate component in the hybrid materials were found to be higher than that of the bulk polymer. Other vinyl polymers such as poly(methyl methacrylate) and polyacrylonitrile have also been incorporated into the inorganic silica sol-gel matrix by using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For reviews, see: C.J.Brinker and G.W.Scherer, Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing (Academic Press: San Diego, 1990)

    Google Scholar 

  2. D.R.Ulrich, J. Non-Cryst. Solids 121, 465 (1990)

    Article  Google Scholar 

  3. H.Schmidt, B.Sieferling, G.Philip, and K.Deichmann, in Ultrastructure Processing of Advanced Ceramics; edited by J.D.Mackenzie and D.R.Ulrich (John Wiley, New York, 1988), p. 651

    Google Scholar 

  4. H.Schmidt, J. Non-Cryst. Solids 112, 419 (1989)

    Article  Google Scholar 

  5. G.L.Wilkes, H.Huang, and R.H.Glaser, in Silicon-Based Polymer Science (Advanced in Chemistry Series 224), edited by J.M.Ziegler and F.W.Fearon (Am. Chem. Soc., Washington, DC, 1990), p. 207

    Google Scholar 

  6. R.Dagani, Chemical & Engineering News 69(21), 30 (1991)

    Google Scholar 

  7. P.Calvert, Nature 353, 501 (1991). Also see Refs. 4 and 5.

    Article  Google Scholar 

  8. G.L.Wilkes, B.Orler, and H.Huang, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 26, 300 (1985)

    Google Scholar 

  9. H.Huang, B.Orler, and G.L.Wilkes, Macromolecules 20, 1322 (1987)

    Google Scholar 

  10. J.E.Mark, C.Y.Jiang, and M.Y.Tang, Macromolecules 17, 2613 (1984)

    Google Scholar 

  11. S.B.Wang and J.E.Mark, Macromol. Reports A28, 185 (1991)

    Article  Google Scholar 

  12. Y.Haruvy and S.E.Webber, Chem. Mater. 3, 501 (1991).

    Google Scholar 

  13. H.-H.Huang and G.L.Wilkes, Polym. Bull. 18, 455–462 (1987)

    Article  Google Scholar 

  14. A.B.Brennan and G.L.Wilkes, Polymer 32, 733 (1991)

    Article  Google Scholar 

  15. A.B.Brennan, D.E.Rodrigues, B.Wang, and G.L.Wilkes, in Chemical Processing of Advanced Materials, edited by L.L.Hench and J.K.West (John Wiley and Sons, Inc., NY 1992), pp. 807–814

    Google Scholar 

  16. B.Abramoff and L.C.Klein, SPIE 1328, 241 (1990)

    Google Scholar 

  17. A.B.Wojcik and L.C.Klein, SPIE 2018, 160 (1993)

    Google Scholar 

  18. A.B.Wojcik and L.C.Klein, J. Sol-Gel Sci. Tech. 4, 57 (1995)

    Google Scholar 

  19. S.Wang, Z.Ahmad, and J.E.Mark, Chem. Mater. 6, 943 (1994)

    Google Scholar 

  20. M.Spinu, A.Brennan, J.Rancourt, G.L.Wilkes, and J.E.McGrath, Mater. Res. Soc. Symp. Proc. 175, 179 (1990)

    Google Scholar 

  21. C.J.T.Landry and B.K.Coltrain, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 32, 514 (1991)

    Google Scholar 

  22. Y.Chujo, E.Ihara, S.Kure, K.Suzuki, and T.Saegusa, Makromol. Chem., Macromol. Symp. 42/43, 303 (1991)

    Google Scholar 

  23. B.R.Mattes, E.T.Knobbe, P.D.Fuqua, F.Nishida, E.-W.Wang, B.M.Pierce, B.Dunn, and R.B.Kaner, Synth. Metals 41–43, 3183 (1991)

    Article  Google Scholar 

  24. P.N. Prasad, F.E. Karasz, Y. Pang, and C.J. Wung, US Pat., 5. 130, 362 (1994).

  25. C.J.Brinker, J. Non-Cryst. Solids 100, 31 (1988)

    Article  Google Scholar 

  26. J.Livage, M.Henry, and C.Sanchez, Prog. Solid State Chem. 18, 259–341 (1988).

    Article  Google Scholar 

  27. B.M.Novak, Adv. Mater. 5, 422 (1993).

    Google Scholar 

  28. B.M.Novak and C.Davies, Macromolecules 24, 5481 (1991).

    Google Scholar 

  29. B.E.Yoldas, J. Mater. Sci. 21, 1087 (1986).

    Google Scholar 

  30. Y.Wei, W.Wang, J.-M.Yeh, B.Wang, D.Yang, J.K.MurrayJr., D.Jin, and G.Wei, in Hybrid Organic-Inorganic Composites (Am. Chem. Soc. Symp. Ser. 585), edited by J.E.Mark, C.Y.-C.Lee and P.A.Bianconi (Am. Chem. Soc., Washington DC, 1995), p. 125.

    Google Scholar 

  31. Y.Wei, R.Bakthavatchalam, and C.K.Whitecar, Chem. Mater. 2, 337 (1990)

    Article  CAS  Google Scholar 

  32. Y.Wei, D.Yang, and R.Bakthavatchalam, Mater. Lett. 13, 261 (1992)

    Article  Google Scholar 

  33. Y.Wei, W.Wang, J.-M.Yeh, B.Wang, D.Yang, and J.K.MurrayJr., Adv. Mater. 6, 372 (1994)

    Google Scholar 

  34. Y.Wei, J.-M.Yeh, D.Jin, X.Jia, and J.Wang, Chem. Mater. 7, 969 (1995).

    Google Scholar 

  35. Y.Wei, D.Yang, L.Tang, and M.K.Hutchins, J. Mater. Res. 8, 1143 (1993).

    Google Scholar 

  36. Y.Wei, D.Yang, and L.Tang, Makromol. Chem., Rapid commun. 14, 273 (1993)

    Google Scholar 

  37. Y.Wei, W.Wang, D.Yang, and L.Tang, Chem. Mater. 6, 1737 (1994).

    Google Scholar 

  38. M.W.Ellsworth and B.M.Novak, J. Am. Chem. Soc. 113, 2756 (1991)

    Google Scholar 

  39. B.M.Novak, M.Ellsworth, T.Wallow, and C.Davies, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 31(2), 698–9 (1990).

    Google Scholar 

  40. B.M.Novak and M.W.Ellsworth, Mater. Sci. Eng. A162, 257–264 (1993)

    Article  Google Scholar 

  41. M.W.Ellsworth and B.M.Novak, Chem. Mater. 5, 839 (1993)

    Google Scholar 

  42. H.B.Sunkara, J.M.Jethmalani and W.T.Ford, Chem. Mater. 6, 362–64 (1994)

    Google Scholar 

  43. Y.Abe and T.Misono, J. Polym. Sci. Polym. Lett. Ed. 20, 205 (1982).

    Article  Google Scholar 

  44. Y. Wei, D. Jin, G. Wei, and C. Yang, results of be published.

  45. D.R.Lide (Editor-in-Chief), CRC Handbook of Chemistry and Physics, 72th Edition (CRC Press, Boston, 1991–92), pp. 3–356.

    Google Scholar 

  46. E.J.A.Pope, A.Asami, and J.D.Mackenzie, J. Mater. Res. 4, 1018 (1989).

    Google Scholar 

  47. R.A.Nyquist and R.Streck, Vibrational Spectroscopy 8, 71 (1994).

    Article  Google Scholar 

  48. L.J.Bellamy, The Infra-red Spectra of Complex Molecules (John Wiley, New York, 1958), p. 338

    Google Scholar 

  49. R.M.Silverstein, G.C.Bassler, and T.C.Morrill, Spectrometric Identification of Organic Compounds, 5th Edition (John Wiley, New York, 1991), p. 91.

    Google Scholar 

  50. I.E.Ruyter and S.A.Svendsen, Acta Odontol. Scand. 36, 75 (1978)

    Google Scholar 

  51. J.L.Ferracane and E.H.Greener, J. Dent. Res. 63, 1093 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Jin, D., Yang, C. et al. A fast convenient method to prepare hybrid sol-gel materials with low volume-shrinkages. J Sol-Gel Sci Technol 7, 191–201 (1996). https://doi.org/10.1007/BF00401037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00401037

Keywords

Navigation