Skip to main content
Log in

Immobilization of plant cells in hybrid sol-gel materials

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Cells of three different plant species were immobilized on a glass fiber fabric by sol-gel deposition. The process involved the following steps: (1) reinforcement of glass-fiber supports by coating with a gelling solution of hybrid-SiO2 precursors, (2) entrapment of cells by stuffing the voids of the support with a suspension cell culture, (3) achievement of a definite immobilization by a primary treatment with SiO2-sol, followed by gas phase reaction of tetraethoxysilane and diethoxymethylsilane with OH groups of cell wall and of surface silica. Immobilized cells maintained their viability as tested by the positive reaction to TTC and by the development of calli from stretched samples. The samples did not release cells in solution over a time period of four months, at least. The biosynthetic capability of one of immobilized species, Coronilla vaginalis, was studied by periodically monitoring the production of umbelliferone and marmesin which constituted the major secondary metabolites produced by in vitro cultured cells of this species. The results were evaluated in order to determine the versatility of the method and its potential for exploitation in continuous industrial-scale production of rare and fine chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2,4-D =:

2,4-dichlorophenoxyacetic acid

K =:

kinetin

IAA =:

indol-3-acetic acid

NAA =:

naphthalenacetic acid

B5 =:

Gamborg's medium

MS =:

Murashige and Skoog medium

TEOS =:

tetraethoxysilane

DEMS =:

diethoxymethylsilane

DEDMS =:

diethoxydimethylsilane

TTC =:

tetrazolium salt

References

  1. J.D. Phillipson, in Secondary Products from Plant Tissue Culture, edited by B. V. Charlwood and M.J.C. Rhodes (Oxford Science Publication, 1990), pp. 1–21.

  2. K.C.Nicolaou, W.-M.Dai, and R.K.Guy, Angew. Chem. Int. Ed. Engl. 33, 15 (1994), and references therein.

    Google Scholar 

  3. K.C.Nicolau, J.-J.Lin, Z.Yang, H.Ueno, E.J.Sorensen, C.F.Claiborne, R.K.Guy, C.-K.Hwang, M.Nakada, and P.G.Narntermet, J. Am. Chem. Soc. 117, 634 (1995).

    Google Scholar 

  4. K.C.Nicolau, Z.Yang, J.-J.Lin, P.G.Narntermet, C.F.Claiborne, J.Renand, R.K.Guy, and K.Shibayama. J. Am. Chem. Soc. 117, 645 (1995).

    Google Scholar 

  5. K.C.Nicolau, H.Ueno, J.-J.Lin, P.G.Narnternet, Z.Yang, J.Renand, K.Paulvannan, and R.Chadha. J. Am. Chem. Soc. 117, 653 (1995).

    Google Scholar 

  6. J.J.Masters, D.K.Jung, S.J.Danishefsky, L.B.Snyder, T.K.Park, R.C.A.Isaacs, C.A.Alaimo, and W.B.Young, Angew. Chem. Int. Ed. Eng. 34, 452 (1995).

    Google Scholar 

  7. M.W.Fowler, in Plant Biotechnology, edited by S.H.Mantell and H.Smith (Cambridge University Press, Cambridge, 1983), pp 3–37.

    Google Scholar 

  8. M.E.Curtin, Biotechnology 1, 649 (1983).

    Google Scholar 

  9. Y.Fujita and M.Tabuta, in Plant Tissue and Cell Culture, edited by C.E.Green, D.A.Somers, W.P.Hackett, and D.D.Biesboer (Alan R. Liss, New York, 1987), p. 169.

    Google Scholar 

  10. W.Kreis and E.Reinhard, Planta Medica 55, 409 (1989).

    Google Scholar 

  11. J.P.Kutney, Acc: Chem. Res. 26, 559–566 (1993) and references therein.

    Google Scholar 

  12. M.J.C.Rhodes, Top. Enz. Ferm. Biotechnol. 10, 51 (1985).

    Google Scholar 

  13. A.Roseverar and C.A.Lambe, Adv. Biochem. Eng. Biotechnol. 33, 36 (1990).

    Google Scholar 

  14. P.Brodelius and K.Nilsson, FEBS Lett. 122, 312 (1980).

    Google Scholar 

  15. P.Brodelius and K.Mosbach, Adv. Appl. Microbiol. 28, 1 (1982).

    Google Scholar 

  16. P.Brodelius, Trends Biotechnol. 3, 280 (1985).

    Google Scholar 

  17. F.Majerus and A.Pareilleux, Plant Cell Rep. 5, 302 (1986).

    Google Scholar 

  18. E.Galun, D.Aviv, A.Dantes, and A.Freeman, Planta Med. 49, 9 (1983).

    Google Scholar 

  19. T.Furuya, K.Koge, and Y.Orihara, Plant Cell Rep. 9, 125 (1990).

    Google Scholar 

  20. J.Archambault, B.Wolesky, and W.G.W.Kurz, Biotechnol. Bioeng. 35, 660 (1990).

    Google Scholar 

  21. P.J.Facchini and F.DiCosmo, Appl. Microbiol. Biotechnol. 33, 36 (1990) and ibidem 35, 382 (1991).

    Google Scholar 

  22. D.Avnir, S.Braun, O.Lev, and M.Ottolenghi, Chem. Mater. 6, 1605 (1994) and references therein.

    Google Scholar 

  23. L.Inama, S.Diré, G.Carturan, and A.Cavazza, J. Biotechnol. 30, 197 (1993).

    Google Scholar 

  24. C.J.Brinker and G.W.Scherer, Sol-Gel Science (Academic Press, New York, 1990).

    Google Scholar 

  25. J. Sol-Gel Sci. Technol. 1 (1993/1994) articles of the volume.

  26. E.M. Cappelletti, G. Carturan, and A. Piovan, PCT International Application/IT No9500083, international filing date: 18 May 1995.

  27. R.Filippini, R.Caniato, E.M.Cappelletti, G.Innocenti, and G.Cassina, Micropropagation 1, 87 (1994).

    Google Scholar 

  28. A. Piovan, R. Filippini, G. Innocenti, R. Caniato, and E.M. Cappelletti, in Biotechnology in Agriculture and Forestry, Medicinal and Aromatic Plants IX, edited by Y.P.S. Bajaj (1995), (in press).

  29. P.J.Facchini and F.DiCosmo, Biotechnol. Bioeng. 37, 397 (1991), and references therein.

    Google Scholar 

  30. G.D.Sorarù, M.Guglielmi, and R.D.Maschio, J. Non Cryst. Solids 100, 440 (1988).

    Google Scholar 

  31. V.M.Sglavo and S.Dirè, J. Sol-Gel Sci. Technol. 2, 143 (1992).

    Google Scholar 

  32. R.Nicholov, R.P.Veregin, A.W.Neumann, and F.DiCosmo, Colloids Surf. A 70(2), 159 (1993).

    Google Scholar 

  33. M.Ho, K.Yamashita, M.Suzuki, E.Tomiya, I.Karube, and A.Makishima, J. Ceram. Soc. Jpn. 100, 426 (1992).

    Google Scholar 

  34. P.Johnson and T.L.Whateley, J. Colloid Interface Sci. 37, 557 (1971), Biochim. Biophys. Acta 276, 323 (1972).

    Google Scholar 

  35. L.M.Ellerby, C.R.Nishida, F.Nishida, S.A.Yamanaka, B.Dunn, J.S.Valentine, and J.I.Zink, Science 255, 1113 (1992).

    Google Scholar 

  36. M.T.Reetz, A.Zonta, and J.Simpelkamp, Angew. Chem. Int. Ed. Engl. 34(3), 301 (1995).

    Google Scholar 

  37. S.Brown, S.Rappoport, S.Shtelzer, R.Zusman, S.Druckmann, D.Avnir, and M.Ottolenghi, in Biotechnology: Bridging Research and Application, edited by D.Kameli, A.Shakrabarty, and S.E.Kornguth (Kluwer, Boston, 1991), p. 205.

    Google Scholar 

  38. J. Livage, J.Y. Barreau, J.M. Da Costa, and I. Desportes, Sol-Gel Optics, SPIE Symp. Ser. (1994), (in press).

  39. C.Divies and M.H.Siess, Eur. J. Appl. Micr. Biotechnol. 12, 10 (1981).

    Google Scholar 

  40. I.B.Holchberg and P.Morgalith, Eur. J. Appl. Micr. Biotechnol. 13, 133 (1981).

    Google Scholar 

  41. R.C.Beier and E.H.Oertli, Phytochemistry 22, 2595 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campostrini, R., Carturan, G., Caniato, R. et al. Immobilization of plant cells in hybrid sol-gel materials. J Sol-Gel Sci Technol 7, 87–97 (1996). https://doi.org/10.1007/BF00401888

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00401888

Keywords

Navigation