Skip to main content
Log in

Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pep 5 and nisin are cationic bactericidal peptides which were shown to induce autolysis in Staphylococcus cohnii 22. In contrast to nisin, Pep 5 induced lysis could be stimulated in the presence of glucose. Addition of lipoteichoic acids (LTA) (d-alanine:phosphorus=0.475:1) inhibited all effects of Pep 5 on susceptible cells in a molar ratio LTA:Pep 5 of 10:1. Treatment of S. cohnii 22 with Pep 5 or nisin for 20 min and subsequent washing with 2.5 M NaCl released autolysin activity. Crude preparations of the hydrolyzing enzymes produced free amino groups as well as polysaccharide fragments from the murein backbone, suggesting the presence of a muramidase or glucosamidase, and endopeptidase or amidase. Both enzyme activities were inhibited by lipoteichoic acid; they could be fully reactivated by addition of Pep 5 in sufficient concentrations. The velocity of hydrolysis was not influenced by nisin, whereas it was doubled in presence of Pep 5. The results are discussed in view of a possible mechanism of induction of lysis by Pep 5 and nisin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A.U.:

arbitrary unit

CCCP:

carbonylcyanide-m-chlorophenyl hydrazone

DNase:

deoxyribonuclease

CYG:

casein yeast extract glucose

IT:

initial turbidity

LTA:

lipoteichoic acid

RNase:

ribonuclease

TSB:

Tryptone Soy Broth

References

  • Allsop J, Work E (1963) Cell walls of Propionibacterium species: Fractionation and composition. Biochem J 87:512–519

    PubMed  Google Scholar 

  • Aminoff D, Morgan WTJ, Watkins WM (1952) Studies in immunochemistry. 11. The action of dilute alkali on the N-acetylhexosamines and the specific blood-group mucoids. Biochem J 51:379–389

    PubMed  Google Scholar 

  • Blümel P, Reinicke B, Lahav M, Giesbrecht P (1983) Cell wall degradation of Staphylococcus aureus by autolysins and lysozyme. In: Hakenbeck R, Höltje JV, Labischinski H (eds) The target of penicillin. The murein sacculus of bacterial cell walls. Architecture and growth. Proceedings International FEMS Symposium Berlin (West). Walter de Gruyter. Berlin New York, pp 323–328

    Google Scholar 

  • Brandis H, Sahl HG (1984) Staphylococcins and other antibacterial substances produced by staphylococci. In: Meyer W (ed) Staphylokokken und Staphylokokken-Erkrankungen. VEB Gustav Fischer, Jena, pp 173–186

    Google Scholar 

  • Chen PS jr, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Analyt Chem 28:1756–1758

    Google Scholar 

  • Cleveland RF, Wicken AJ, Daneo-Moore L, Shockman GD (1976) Inhibition of wall autolysis in Streptococcus faecalis by lipoteichoic acid and lipids. J Bacteriol 126:192–197

    PubMed  Google Scholar 

  • Ellison JS, Mattern CFT, Daniel WA (1971) Structural changes in Clostridium botulium type E after treatment with boticin S51. J Bacteriol 108:526–534

    PubMed  Google Scholar 

  • Fischer W, Rösel P (1980) The alanine ester substitution of lipoteichoic acid (LTA) in Staphylococcus aureus. FEBS Lett 119:224–226

    PubMed  Google Scholar 

  • Fischer W, Koch HU, Rösel P (1980) Alanine ester-containing native lipoteichoic acids do not act as lipoteichoic acid carrier. Isolation, structural and functional characterization. J Biol Chem 255:4557–4562

    PubMed  Google Scholar 

  • Fischer W, Rösel P, Koch HU (1981) Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J Bacteriol 146:467–475

    PubMed  Google Scholar 

  • Fischer W, Koch HU, Haas R (1983) Improved preparation of lipoteichoic acids. Eur J Biochem 133:523–530

    PubMed  Google Scholar 

  • Ghuysen JM, Tipper DJ, Strominger JL (1966) Enzymes that degrade bacterial cell walls. In: Neufield EF, Ginsberg V (eds) Methods in enzymology, vol 8. Academic Press, New York, pp 685–699

    Google Scholar 

  • Ginsburg I, Lahav M (1983) Lysis and biodegradation of microorganisms in infectious sites may involve cooperation between leukocyte, serum factors and bacterial wall autolysins: a working hypothesis. Eur J Clin Microbiol 2:186–191

    PubMed  Google Scholar 

  • Giudicelli S, Tomasz A (1984) Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J Bacteriol 158:1188–1190

    PubMed  Google Scholar 

  • Graßl M (1970) d-Alanin. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 2nd ed, vol II. Verlag Chemie, Weinheim/Bergstraße, pp 1641–1644

    Google Scholar 

  • Gross E, Morell JL (1971) The structure of nisin. J Am Chem Soc 93:4634–4635

    PubMed  Google Scholar 

  • Haas R, Koch HU, Fischer W (1984) Alanyl turnover from lipoteichoic acid to teichoic acid in Staphylococcus aureus. FEMS Microbiol Lett 21:27–31

    Google Scholar 

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 5 B. Academic Press, London New York, pp 210–344

    Google Scholar 

  • Herbold DR, Glaser L (1975) Interaction of N-acetylmuramic acid l-alanine amidase with cell wall polymers. J Biol Chem 250: 7231–7238

    PubMed  Google Scholar 

  • Jolliffe LK, Doyle RJ, Streips UN (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25:753–763

    PubMed  Google Scholar 

  • Krebs KG, Heusser D, Wimmer H (1967) Sprühreagenzien. In: Stahl E (ed) Dünnschichtchromatographie. Ein Laboratoriums-handbuch, 2nd ed. Springer, Berlin Heidelberg New York, pp 813–861

    Google Scholar 

  • Lahav M, Ginsburg I, Kersten T, Wecke J, Giesbrecht P (1983) Induced autolytic wall processes in heat-inactivated Staphylococcus aureus. In: Hakenbeck R, Höltje JV, Labischinski H (eds) The target of penicillin. The murein sacculus of bacterial cell walls. Architecture and growth. Proceedings International FEMS Symposium Berlin (West). Walter de Gruyter, Berlin New York, pp 335–340

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • MacKay BJ, Denepitiya L, Ianoco VJ, Krost SB, Pollock JJ (1984) Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutants. Infect Immun 44:695–701

    PubMed  Google Scholar 

  • Ramseier HR (1960) Die Wirkung von Nisin auf Clostridium butyricum Prazm. Arch Mikrobiol 37:57–94

    PubMed  Google Scholar 

  • Reisinger P, Seidel H, Tschesche H, Hammes WP (1980) The effect of nisin on murein synthesis. Arch Microbiol 127:187–193

    PubMed  Google Scholar 

  • Reissig JL, Strominger JL, Leloir LF (1955) A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 217:959–966

    PubMed  Google Scholar 

  • Sahl HG, Brandis H (1981) Production, purification and chemical properties of an antistaphylococcal agent produced by Staphylococcus epidermidis. J Gen Microbiol 127:377–384

    PubMed  Google Scholar 

  • Sahl HG, Brandis H (1982) Mode of action of the staphylococcin-like peptide Pep 5 and culture conditions effecting its activity. Zbl Bakt Hyg, I Abt Orig A 252:166–175

    Google Scholar 

  • Sahl HG, Brandis H (1983) Efflux of low-M r substances from the cytoplasm of sensitive cells caused by the staphylococcin-like agent Pep 5. FEMS Microbiol Lett 16:75–79

    Article  Google Scholar 

  • Schaller K, Höltje JV, Braun V (1982) Colicin M is an inhibitor of murein biosynthesis. J Bacteriol 152:994–1000

    PubMed  Google Scholar 

  • Selsted ME, Szklarek D, Lehrer RI (1984) Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun 45:150–154

    PubMed  Google Scholar 

  • Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    PubMed  Google Scholar 

  • Tipper DJ (1969) Mechanism of autolysis of isolated cell walls of Staphylococcus aureus. J Bacteriol 97:837–847

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierbaum, G., Sahl, HG. Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch. Microbiol. 141, 249–254 (1985). https://doi.org/10.1007/BF00408067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408067

Key words

Navigation