Skip to main content
Log in

Microbial assimilation of hydrocarbons

I. The fine-structure of a hydrocarbon oxidizing Acinetobacter sp.

  • Short Communications
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

  1. 1.

    The fine-structure analysis of the hydrocarbon oxidizing microorganism, Acinetobacter sp., demonstrated a cytoplasmic modification resulting from growth on paraffinic and olefinic hydrocarbons.

  2. 2.

    Intracytoplasmic hydrocarbon inclusions were documented by electron microscopy with chemical identifications obtained by gas chromatography and X-ray diffraction.

  3. 3.

    These results demonstrate the ability of a micro-organism to accumulate hydrocarbon substrates intracellularly which, in turn, indicates transport across the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Albro, P. W., Dittmer, J. C.: Bacterial hydrocarbons: occurrence, structure, and metabolism. Lipids 5, 320–325 (1970)

    Google Scholar 

  • Atlas, R. M., Heinz, C. E.: Ultrastructure of two species of oil-degrading marine bacteria. Canad. J. Microbiol. 19, 43–45 (1973)

    Google Scholar 

  • Baumann, P., Doudoroff, M., Stanier, R. Y.: A study of the Moraxella group. II. Oxidase-negative species (Genus Acinetobacter). J. Bact. 95, 1520–1541 (1968)

    Google Scholar 

  • Bos, P., De Boer, W. E.: Some aspects of the utilization of hydrocarbons by yeasts. Antonie v. Leeuwenhoek 34, 241–243 (1968)

    Google Scholar 

  • Davies, S. L., Whittenbury, R.: Fine structure of methane and other hydrocarbon-utilizing bacteria. J. gen. Microbiol. 61, 227–232 (1970)

    Google Scholar 

  • DePetris, S.: Ultrastructure of the cell wall of Escherichia coli and chemical nature of its constituent layers. J. Ultrastruct. Res. 19, 45–83 (1967)

    Google Scholar 

  • Finnerty, W. R., Hawtrey, E., Kallio, R. E.: Alkane oxidizing micrococci. Z. allgem. Mikrobiol. 2, 169–177 (1962)

    Google Scholar 

  • Finnerty, W. R., Kallio, R. E.: The origin of palmitate carbon in esters produced by Micrococcus cerificans. J. Bact. 87, 1261–1265 (1964)

    Google Scholar 

  • Finnerty, W. R., Kallio, R. E., Klimstra, P. D., Wawzonek, S.: Utilization of 1-alkyl hydroperoxides by Micrococcus cerificans. Z. allgem. Mikrobiol. 2, 263–266 (1962)

    Google Scholar 

  • Floodgate, G. D.: Biodegradation of hydrocarbons in the sea, pp. 153–169. In: R. Mitchell, ed.: Water pollution microbiology. London: Wiley 1972

    Google Scholar 

  • Freeman, J. A., Spurlock, B. O.: A new epoxy embedment for electron microscopy. J. Cell Biol. 13, 437–443 (1962)

    Google Scholar 

  • Glauert, A. M., Thornley, M. J.: Glutaraldehyde fixation of Gram-negative bacteria. J. roy. Microscop. Soc. 85, 449–453 (1966)

    Google Scholar 

  • Juni, Elliot: Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J. Bact. 112, 917–931 (1972)

    Google Scholar 

  • Kallio, R. F., Finnerty, W. R., Wawzonek, S., Klimstra, P. D.: Mechanisms in the microbial oxidation of alkanes, pp. 453–463. In: C. Oppenheimer, ed.: Symposium on Marine Microbiology. Springfield, Ill.: Ch. C. Thomas 1963

    Google Scholar 

  • Kellenberger, E. A., Ryter, A., Sechaud, J.: Electron microscope study of DNA-containing plasma. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. biophys. biochem. Cytol. 4, 671–678 (1958)

    Google Scholar 

  • Klug, M. J., Markovetz, A. J.: Utilization of aliphatic hydrocarbons by microorganisms, Vol. 5, pp. 1–43, In: A. H. Rose, J. F. Wilkinson, eds.: Advances in microbial physiology. London: Academic Press 1971

    Google Scholar 

  • Law, J. H., Slepecky, R. A.: Assay of poly-β-hydroxy butyric acid. J. Bact. 82, 33–36 (1961)

    Google Scholar 

  • Ludvik, J., Munk, V., Dostalek, M.: Ultrastructural changes in the yeast Candida lipolytica caused by penetration of hydrocarbons into the cell. Experientia (Basel) 24, 1066–1068 (1968)

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961)

    Google Scholar 

  • Makula, R. A., Finnerty, W. R.: Microbial assimilation of hydrocarbons. I. Fatty acids derived from alkanes. J. Bact. 95, 2102–2107 (1968a)

    Google Scholar 

  • Makula, R. A., Finnerty, W. R.: Microbial assimilation of hydrocarbons. II. Fatty acids derived from 1-alkenes. J. Bact. 95, 2108–2111 (1968b)

    Google Scholar 

  • Makula, R. A., Finnerty, W. R.: Microbial assimilation of hydrocarbons. III. Identification of phospholipids. J. Bact. 193, 348–355 (1970)

    Google Scholar 

  • Makula, R. A., Finnerty, W. R.: Microbial assimilation of hydrocarbons. IV. Phospholipid metabolism. J. Bact. 107, 806–814 (1971)

    Google Scholar 

  • Makula, R. A., Finnerty, W. R.: Microbial assimilation of hydrocarbons. V. Cellular distribution of fatty acids. J. Bact. 112, 398–407 (1972)

    Google Scholar 

  • McCaman, R. E., Finnerty, W. R.: Biosynthesis of cytidine diphosphodiglyceride by a particulate fraction from Micrococcus cerificans. J. biol. Chem. 243, 5074–5080 (1968)

    Google Scholar 

  • McKenna, E. J., Kallio, R. E.: The biology of hydrocarbons. Ann. Rev. Microbiol. 19, 183–208 (1965)

    Google Scholar 

  • McLee, A. G., Davies, S. L.: Linear growth of a Torulopsis sp. on n-alkanes. Canad. J. Microbiol. 18, 315–319 (1972)

    Google Scholar 

  • Munk, V., Dostálek, M., Volfova, O.: Cultivation of yeast on gas oil. Biotech. Bioeng. 12, 383–391 (1969)

    Google Scholar 

  • Murray, R. G. E., Steed, P., Elson, H. E.: The location of the mucopeptide in sections of the cell wall of Escherichia coli and other gram-negative bacteria. Canad. J. Microbiol. 11, 547–560 (1965)

    Google Scholar 

  • Proctor, H. M., Norris, J. R., Ribbons, D. W.: Fine structure of methane-utilizing bacteria. J. appl. Bact. 32, 118–121 (1969)

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)

    Google Scholar 

  • Smith, U., Ribbons, D. W.: Fine structure of Methanomonas methanooxidans. Arch. Mikrobiol. 74, 116–122 (1970)

    Google Scholar 

  • Staubli, W.: A new embedding technique for electron microscopy, combining a water soluble epoxy-resin (Durcupan) with water-insoluble Araldite. J. Cell Biol. 16, 197–199 (1963)

    Google Scholar 

  • Stewart, J. E., Finnerty, W. R., Kallio, R. E., Stevenson, D. P.: Esters from the oxidation of olefins. Science 132, 1254–1255 (1960)

    Google Scholar 

  • Stewart, J. E., Kallio, R. E.: Bacterial hydrocarbon oxidation. II. Ester formation from alkanes. J. Bact. 78, 726–730 (1959)

    Google Scholar 

  • Stewart, J. E., Kallio, R. E., Stevenson, D. P., Jones, A. C., Schissler, D. D.: Bacterial hydrocarbon oxidation. I. Oxidation of n-hexadecane by a gram-negative coccus. J. Bact. 78, 441–448 (1959)

    Google Scholar 

  • Van der Linden, A. C., Thijsee, G. J. E.: Microbial oxidation of hydrocarbons. Advanc. Enzymol. 27, 469–546 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, R.S., Finnerty, W.R., Sudarsanan, K. et al. Microbial assimilation of hydrocarbons. Arch. Microbiol. 102, 75–83 (1975). https://doi.org/10.1007/BF00428349

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428349

Key words

Navigation