Skip to main content
Log in

Abrasion resistant inorganic/organic coating materials prepared by the sol-gel method

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Novel abrasion resistant coating materials prepared by the sol-gel method have been developed and applied on the polymeric substrates bisphenol-A polycarbonate and diallyl diglycol carbonate resin (CR-39). These coatings are inorganic/organic hybrid network materials synthesized from 3-isocyanatopropyltriethoxysilane functionalized organics and metal alkoxide. The organic components are 3,3′-iminobispropylamine (IMPA), resorcinol (RSOL), diethylenetriamine (DETA), poly(ethyleneimine) (PEI), glycerol and a series of diols. The metal alkoxides are tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS). These materials are spin coated onto bisphenol-A polycarbonate and CR-39 sheets and thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that the abrasion resistance of inorganic/organic hybrid coatings in the neat form or containing metal alkoxide can be very effective to improve the abrasion resistance of polymeric substrates. The adhesion tests show that the adhesion between coating and substrate can be greatly improved by treating the polymeric substrate surface with a primer solution of isopropanol containing 3-aminopropyltriethoxysilane (3-APS). The interaction between 3-APS and the polycarbonate surface was investigated by a molecular dynamics simulation. The results strongly suggest that the hydrogen bonding between the amino group of the 3-APS and ester group in the polycarbonate backbone are sufficiently strong to influence the orientation of the primer molecules. The abrasion resistance of these new coating systems is discussed in light of the structure of the organic components. All of these results show that these coating materials have excellent abrasion resistance and have potential applications as coating materials for lenses and other polymeric products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kasi, JPn. Kokai Tokkyo Koho, JP6335, 633 (88,35,633).

  2. R. Nass, E. Appac, W. Glaubitt, and H. Schmidt, J. Non-Cryst. Solids 121, 370 (1990).

    Google Scholar 

  3. H. Schmidt and H. Walter, J. Non-Cryst. Solids 121, 428 (1990).

    Google Scholar 

  4. H. Schmidt, Mat. Res. Soc. Symp. Proc. 32, 327 (1984).

    Google Scholar 

  5. G.L. Wilkes, B. Orler, and H.H. Huang, Polymer Preprints 26(2), 300 (1985).

    Google Scholar 

  6. H. Huang and G.L. Wilkes, Polymer Bulletin 18, 455 (1987).

    Google Scholar 

  7. H. Huang, R.H. Glaser, and G.L. Wilkes, ACS Symp. Ser. 360, 354 (1988).

    Google Scholar 

  8. H. Huang and G.L. Wilkes, Polymer 30, 2001 (1989).

    Google Scholar 

  9. Y. Hu and J.D. Mackenzie, Mat. Res. Soc. Symp. Proc. 271, 681 (1992).

    Google Scholar 

  10. Y. Hu and J.D. Mackenzie, J. Mat. Sci. 27, 4415 (1992).

    Google Scholar 

  11. J.D. Machenzie, Y.J. Chung, and Y. Hu, J. Non-Cryst. Solids, 147 & 148, 271 (1992).

    Google Scholar 

  12. J.E. Mark and S.-J. Pan, Makromol. Chem. Rapid Commun. 3, 681 (1982).

    Google Scholar 

  13. J.E. Mark, C.-Y. Jiang and M.-Y. Tang, Macromolecules 17, 2613 (1984).

    Google Scholar 

  14. J.E. Mark, J. Appl. Polym. Sci., Appl. Polym. Symp. 50, 273 (1992).

    Google Scholar 

  15. J.E. Mark, Frontier of Polym. & Advanced Mater., edited by P.N. Prasad (Plenum Press, New York, 1994), p. 403.

    Google Scholar 

  16. B.M. Novak, Advanced Materials 5, 422 (1993).

    Google Scholar 

  17. H. Schmidt, Mat. Res. Soc. Symp. Proc. 171, 3 (1990).

    Google Scholar 

  18. B.M. Novak and R.H. Grubbs, J. Am. Chem. Soc. 110, 7542 (1988).

    Google Scholar 

  19. S. Wang, Z. Ahmad, and J.E. Mark, Macromol. Reports A31, 411 (1994).

    Google Scholar 

  20. J.L.W. Noell, G.L. Wilkes, D.K. Mohauty, and J.E. McGrath, J. Appl. Polym. Sci. 40, 1177 (1990).

    Google Scholar 

  21. C. Betrabet and G.L. Wilkes, Polymer Preprints 32(2), 286 (1992).

    Google Scholar 

  22. B. Tamami, C. Betrabet, and G.L. Wilkes, Polymer Bulletin 30, 39 (1993).

    Google Scholar 

  23. B. Tamami, C. Betrabet, and G.L. Wilkes, Polymer Bulletin 30, 393 (1993).

    Google Scholar 

  24. B. Wang and G.L. Wilkes, J. Macromol. Sci-Pure Appl. Chem. A31, 249 (1994).

    Google Scholar 

  25. B. Wang, G.L. Wilkes, C.D. Smith, and J.E. McGrath, Polymer Commun. 32, 400 (1991).

    Google Scholar 

  26. J. Wen and G.L. Wilkes, J. Inorganic & Organometallic Polymers 5, 000 (1995).

  27. C. Betrabet and G.L. Wilkes, J. Inorganic & Organometallic Polymers 4, 343 (1994).

    Google Scholar 

  28. M. El-Shabsy, Period. Polytech. Electr. Eng. 25, 283 (1981).

    Google Scholar 

  29. Y. Zhan and W.L. Mattice, Macromolecules 27, 7056 1994.

    Google Scholar 

  30. A. Selwood, Wear 4, 311 (1961).

    Google Scholar 

  31. W.D. Bascom, Eng. Mater. Handbook (ASM International EDS., 1990) V3, p. 254.

  32. E.P. Plueddemann, Adhesion Aspects of Polymeric Coatings, edited by K.L. Mittal (Plenum Press, New York, 1983), p. 319.

    Google Scholar 

  33. S.L. Mayo, B.D. Olafson, and W.A. Goddard III, J. Phys. Chem. 94, 8897 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, J., Vasudevan, V.J. & Wilkes, G.L. Abrasion resistant inorganic/organic coating materials prepared by the sol-gel method. J Sol-Gel Sci Technol 5, 115–126 (1995). https://doi.org/10.1007/BF00487727

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00487727

Keywords

Navigation