Skip to main content
Log in

Thermal expansion of molybdenum in the range 1500–2800 K by a transient interferometric technique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The linear thermal expansion of molybdenum has been measured in the temperature range 1500–2800 K by means of a transient (subsecond) interferometric technique. The molybdenum selected for these measurements was the Standard Reference Material SRM 781 (a high-temperature enthalpy and heat capacity standard). The results are expressed by the relation \(\begin{gathered} (l - l_0 )/l_0 = 6.0373 \times {\text{10}}^{ - {\text{3}}} - 1.1175 \times {\text{10}}^{ - {\text{5}}} T + 1.3557 \times {\text{10}}^{ - {\text{8}}} T^2 \hfill \\ {\text{ }} - 4.6688 \times 10^{12} T^3 {\text{ + 6}}{\text{.9032}} \times {\text{10}}^{ - {\text{16}}} T^4 \hfill \\ \end{gathered} \) where T is in K and l 0 is the specimen length at 20°C. The maximum error in the reported values of thermal expansion is estimated to be about 1% at 2000 K and not more than 2% at 2800 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Miiller and A. Cezairliyan, Int. J. Thermophys. 3:259 (1982).

    Google Scholar 

  2. A. Cezairliyan, M. S. Morse, H. A. Berman, and C. W. Beckett, J. Res. Natl. Bur. Stand. (U.S.) 74A:65 (1970).

    Google Scholar 

  3. A. Cezairliyan, J. Res. Natl. Bur. Stand. (U.S.) 75C:7 (1971).

    Google Scholar 

  4. G. M. Foley, Rev. Sci. Instrum. 41:827 (1970).

    Google Scholar 

  5. Office of Standard Reference Materials, NBS Standard Reference Materials Catalog, 1981–83 Edition, NBS Special Publication 260 (U.S. Govt. Printing Office, Washington, D.C., 1981).

    Google Scholar 

  6. D. A. Ditmars, A. Cezairliyan, S. Ishihara, and T. B. Douglas, NBS Special Publication 260-55 (U.S. Govt. Printing Office, Washington, D.C., 1977).

    Google Scholar 

  7. The International Committee for Weights and Measures, Metrologia 5:35 (1969).

    Google Scholar 

  8. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermophysical Properties of Matter, Vol. 12. Thermal Expansion (IFI/Plenum, New York, 1975).

    Google Scholar 

  9. A. G. Worthing, Phys. Rev. 28:190 (1926).

    Google Scholar 

  10. J. Demarquay, Compt. Rend. 220:81 (1945).

    Google Scholar 

  11. J. W. Edwards, R. Speiser, and H. L. Johnston, J. Appl. Phys. 22:424 (1951).

    Google Scholar 

  12. N. S. Rasor and J. D. McClelland, J. Phys. Chem. Solids 15:17 (1960).

    Google Scholar 

  13. R. G. Ross and W. Hume-Rothery, J. Less Common Met. 5:258 (1963).

    Google Scholar 

  14. V. M. Amonenko, P. V'yugov, and V. S. Gumenyuk, High Temp. (USSR) 2:22 (1964).

    Google Scholar 

  15. J. B. Conway and A. C. Losekamp, Trans. Met. Soc. (AIME) 236:702 (1966).

    Google Scholar 

  16. V. A. Petukhov and V. Ya. Chekhovskoi, High Temp. High Press. 4:671 (1972).

    Google Scholar 

  17. Y. Waseda, K. Hirata, and M. Ohtani, High Temp. High Press. 7:221 (1975).

    Google Scholar 

  18. V. A. Petukhov, V. Ya. Chekhovskoi, and A. G. Mozgovoi, High Temp. (USSR) 15:175 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miiller, A.P., Cezairliyan, A. Thermal expansion of molybdenum in the range 1500–2800 K by a transient interferometric technique. Int J Thermophys 6, 695–704 (1985). https://doi.org/10.1007/BF00500340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500340

Key words

Navigation