Skip to main content
Log in

A new method for optimizing the structure of thermodynamic correlation equations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An optimization strategy is presented for optimizing the structure of empirical thermodynamic correlation equations. Based on a comprehensive functional expression for the physical dependence considered, which is called a “bank of terms,” the new procedure optimizes the structure and the length of the equation as well. The application of this method results in an equation which meets the quality wanted for representing the experimental data with the lowest number of fitted coefficients. The procedure can be used for the determination of the structure of any equation where the method of the linear least squares is applicable. A detailed description of the algorithm is given which includes values for the control parameters for different applications in the field of thermodynamics (vapor pressure equations, equations of state, etc.) and also for applications in other fields. The optimization steps are described using an equation which represents a relationship between variables in a general form. It is demonstrated how even the complex problem of the optimization of a fundamental equation for the Heimholtz energy can be written in terms of this general equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Helmholtz energy

[A]:

Matrix

a i :

Element of the bank of terms

[B]:

Regression matrix

[BB]:

Working matrix

b ij :

Element of the matrix [B]

C :

Number of constraints

[C]:

Matrix containing constraints

c, i, k, m, n, p :

Serial numbers

F :

Fisher F statistic

I :

Number of elements in the bank of terms

K :

Number of independent variables

L :

Order of the matrix [B]

[IN]:

Vector

M :

Number of experimental data

N :

Maximum number of terms in an equation

N a :

Number of terms in an equation

NM :

Number of mutations

NP :

Number of equations of the population

NR :

Number of regression runs in each generation

NS :

Number of start attempts for the initialization

[N]:

Column matrix of coefficients n i

n i :

Adjustable coefficient

P F , P t , S :

Statistical probabilities

p :

Pressure

p n :

Position of a term in the bank of terms

p s :

Vapor pressure

[Q], [QC]:

Column matrices

R :

Gas constant

S :

Weighted sum of squares

T :

Temperature

t :

Student t statistic

V, V −1 :

Variance of an equation

X k :

“True” independent state variable

x k :

Independent state variable

Y :

“True” dependent state variable

y :

Dependent state variable

z :

Normally distributed random number

[0]:

Null matrix

X 2 :

Weigted sum of squares

δ=ρ/ρ c :

Reduced density

Γ :

Gamma function

λ,λ′ :

Lagrangian multipliers

v :

Degrees of freedom

ρ :

Density

Φ=A/(RT) :

Dimensionless Helmholtz energy

σ :

Standard deviation

σ 2 :

Variance

τ=T c/T:

Inverse reduced temperature

ξ :

State function

ζ :

Empirical relationship

c :

Constraint, critical

i, j, k, m, n :

Indices for terms in the matrices

n:

New

o:

Old

r :

Real part

T :

Transpose of the matrix

-:

Sign for a vector

o:

Ideal-gas state

References

  1. A. Saul and W. Wagner. J. Phys. Chem. Ref. Data 18(4) (1989).

  2. U. Setzmann and W. Wagner, Private communication (Ruhr-University, Bochum, 1988).

  3. O. Redlich and J. N. S. Kwong, Chem. Rev. 44:233 (1949).

    Google Scholar 

  4. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fund. 15:59 (1976).

    Google Scholar 

  5. K. H. Kumar and K. E. Starling, Ind. Eng. Chem. Fund. 21:255 (1982).

    Google Scholar 

  6. M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys. 8:334 (1940).

    Google Scholar 

  7. E. Bender, in Proc. 5th Symp. Thermophys. Prop. (American Society of Mechanical Engineers, New York, 1970), pp. 227–235.

    Google Scholar 

  8. L. Haar, J. S. Gallagher, and G. S. Kell, in Proc. 8th Symp. Thermophys. Prop., J. V. Sengers ed. (American Society of Mechanical Engineering, New York, 1982), pp. 298–300.

    Google Scholar 

  9. K. S. Pitzer and D. R. Schreiber, Fluid Phase Equil. 41:1 (1988).

    Google Scholar 

  10. W. Wagner, Fortschr.-Ber. VDI-Z. Ser. 3, No. 39 (1974).

  11. W. Wagner, Report PC/T15, IUPAC Thermodynamic Table Project Centre, London (1977).

    Google Scholar 

  12. K. M. de Reuck and B. Armstrong, Cryogenics 25:505 (1979).

    Google Scholar 

  13. J. Ewers and W. Wagner, VDI-Forschungsh. 609:27 (1981).

    Google Scholar 

  14. J. Ewers and W. Wagner, in Proc. 8th Symp. Thermophys. Prop., J. V. Sengers, ed. (American Society of Mechanical Engineers, New York, 1982), pp. 78–87.

    Google Scholar 

  15. R. Schmidt and W. Wagner, Fluid Phase Equil. 19:175 (1985).

    Google Scholar 

  16. W. Wagner and K. M. de Reuck, International Thermodynamic Tables of the Fluid State—9 Oxygen, International Union of Pure and Applied Chemistry (Blackwell Scientific, Oxford, 1987).

    Google Scholar 

  17. W. Wagner, Cryogenics 13:470 (1973).

    Google Scholar 

  18. H. D. Baehr, H. Garnjost, and R. Pollak, J. Chem. Thermodynam. 8:113(1976).

    Google Scholar 

  19. W. Wagner, J. Ewers, and W. Pentermann, J. Chem. Thermodynam. 8:1049 (1976).

    Google Scholar 

  20. R. Kleinrahm and W. Wagner, J. Chem. Thermodynam. 18:739 (1986).

    Google Scholar 

  21. M. Jahangiri, R. T. Jacobsen, R. B. Stewart, and R. D. McCarty, J. Phys. Chem. Ref. Data 15:593 (1986).

    Google Scholar 

  22. R. J. B. Craven and K. M. de Reuck, Int. J. Thermophys. 7:541 (1986).

    Google Scholar 

  23. M. Waxman and J. S. Gallagher, J. Chem. Eng. Data 28:224 (1983).

    Google Scholar 

  24. R. T. Jacobsen, R. B. Stewart, and M. Jahangiri, J. Phys. Chem. Ref. Data 15:735 (1986).

    Google Scholar 

  25. R. T. Jacobsen, R. B. Stewart, S. G. Penoncello, and R. D. McCarty, Fluid Phase Equil. 37:169 (1987).

    Google Scholar 

  26. R. J. B. Craven, K. M. de Reuck, and W. A. Wakeham, Pure Appl. Chem. 61:1379 (1989).

    Google Scholar 

  27. W. A. Cole and K. M. de Reuck, Int. J. Thermophys. (in press).

  28. F. A. Fisher, R. Soc. London A144:73 (1934).

    Google Scholar 

  29. K. F. Gauss, Theoria motus corporum coelestium in sectionibus conicis solem ambientum (Perthes und Besser, Hamburg, 1809).

    Google Scholar 

  30. J. Ahrendts and H. D. Baehr, Forsch. Ing.-Wesen 45:1 (1979).

    Google Scholar 

  31. J. Ahrendts and H. D. Baehr, Int. Chem. Eng. 21:557 (1981).

    Google Scholar 

  32. J. G. Hust and R. D. McCarty, Cryogenics 7:200 (1967).

    Google Scholar 

  33. M. A. Efroymson, in Mathematical Methods for Digital Computers, A. Ralston and H. S. Wilt, eds. (John Wiley, New York, 1960), Chap. 7.

    Google Scholar 

  34. N. R. Draper and H. Smith, Applied Regression Analysis (John Wiley, New York, 1966), pp. 163–195.

    Google Scholar 

  35. A. Saul and W. Wagner, Submitted for publication.

  36. W. Duschek and W. Wagner, Submitted for publication.

  37. A. Laesecke, K. Stephan, R. Krauss, and W. Wagner, Submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. phil. F. Kohler on the Occasion of His 65th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setzmann, U., Wagner, W. A new method for optimizing the structure of thermodynamic correlation equations. Int J Thermophys 10, 1103–1126 (1989). https://doi.org/10.1007/BF00500566

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500566

Key words

Navigation