Skip to main content
Log in

Thermal conductivity of five normal alkanes in the temperature range 283–373 k at pressures up to 250 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental data on the thermal conductivity of five liquid n-alkanes-hexane, heptane, octane, decane, and dodecane-are presented in the temperature range from 283 to 373 K at pressures up to 250 MPa or the freezing pressures. The measurements were performed on an absolute basis by an automated transient hot-wire apparatus. The uncertainty of the reported data is estimated to be within ±1%. The thermal conductivity of each alkane decreases almost linearly with rising temperature at a constant pressure and increases with increasing pressure at a constant temperature. Both the temperature coefficient of the thermal conductivity ¦(∂λ/∂T) p¦ and the pressure coefficient (∂λ/∂P) T decrease with increasing carbon number of alkanes. The experimental results were correlated with temperature and pressure by a similar expression to the Tait equation. It is also found that both the dense hard-sphere model presented by Menashe et al. and the modified significant structure theory proposed by Prabhuram and Saksena provide good representations of the present experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Kashiwagi, T. Hashimoto, Y. Tanaka, H. Kubota, and T. Makita, Int. J. Thermophys. 3:201 (1982).

    Google Scholar 

  2. C. A. Nieto de Castro, S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Int. J. Thermophys. 4:311 (1983).

    Google Scholar 

  3. S. Ozawa, N. Ooyatsu, M. Yamabe, S. Honmo, and Y. Ogino, J. Chem. Thermodyn. 12:51 (1980).

    Google Scholar 

  4. J. H. Dymond, J. Robertson, and J. D. Isdale, J. Chem. Thermodyn. 14:51 (1982).

    Google Scholar 

  5. C. A. Nieto de Castro, J. M. N. A. Fareleira, J. C. G. Calado, and W. A. Wakeham, in Proc. 8th Symp. Thermophys. Prop., J. V. Sengers, ed. (ASME, New York, 1982), p. 247.

    Google Scholar 

  6. J. C. G. Calado, J. M. N. A. Fareleira, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 4:193 (1983).

    Google Scholar 

  7. J. Menashe and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 85:340 (1981).

    Google Scholar 

  8. S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 88:32 (1984).

    Google Scholar 

  9. Yu. L. Rastorguev, G. F. Bogatov, and B. A. Grigor'ev, Izv. vyssh. ucheb. Zaved. Neft'i Gaz. 12:69 (1969).

    Google Scholar 

  10. R. A. Mustafaev, Fluid Mech. Soviet Res. 3:133 (1974).

    Google Scholar 

  11. T. Makita, Netsu Bussei 1:19 (1987).

    Google Scholar 

  12. J. H. Dymond, Physica 75:100 (1974).

    Google Scholar 

  13. J. Menashe, M. Mustafa, M. Sage, and W. A. Wakeham; in Proc. 8th Symp. Thermophys. Prop., J. V. Sengers, ed. (ASME, New York, 1982), p. 254.

    Google Scholar 

  14. Prabhuram and M. P. Saksena, Indian J. Pure Appl. Phys. 19:717 (1981).

    Google Scholar 

  15. J. Menashe and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 86:541 (1982).

    Google Scholar 

  16. M. Mustafa, M. Sage, and W. A. Wakeham, Int. J. Thermophys. 3:217 (1982).

    Google Scholar 

  17. A. M. F. Palavra, W. A. Wakeham, and M. Zalaf, Int. J. Thermophys. 8:305 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Y., Itani, Y., Kubota, H. et al. Thermal conductivity of five normal alkanes in the temperature range 283–373 k at pressures up to 250 MPa. Int J Thermophys 9, 331–350 (1988). https://doi.org/10.1007/BF00513075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00513075

Key words

Navigation