Skip to main content
Log in

Deformation behaviour and shape memory effect of near equi-atomic NiTi alloy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical shape memory effect associated with the martensitic-type transformation which occurs in polycrystalline Ti-50.3 at. % Ni alloy has been investigated using the techniques of transmission and optical microscopy. Deformation of initially partially transformed material within the recoverable strain range was found to occur by: (1) stress-induced transformation of the most favourably oriented existing martensite variants at the expense of adjacent unfavourably oriented variants and retained high temperature phase (2) stress-induced re-orientation of favourably oriented martensite by utilizing the most favourably oriented twin system, and (3) stress-induced twin-boundary migration within the martensite. The reverse transformation during heating restores the original grain structure of the high-temperature phase in a highly coherent manner. It was concluded that deformation modes limited to those involved in the transformation process and the reversibility of the transformation give rise to the memory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Perkins, ed., “Shape Memory Effects in Alloys” (Plenum Press, New York, 1975).

    Google Scholar 

  2. R. J. Wasilewski, Trans. Met. Soc. AIME 233 (1965) 1691.

    Google Scholar 

  3. A. G. Rozner and R. J. Wasilewski, J. Inst. Metals 94 (1966) 169.

    Google Scholar 

  4. A. S. Sastri and M. J. Marcinkowski, Trans. Met. Soc. AIME 242 (1968) 2393.

    Google Scholar 

  5. W. B. Cross, A. H. Karigits and F. J. Stimler, “Nitinol Characterization Study”, NASA Contractor Report (1969) Cr-1433.

  6. R. J. Wasilewski, Scripta Met. 5 (1971) 127.

    Google Scholar 

  7. Idem, ibid 5 (1971) 131.

    Google Scholar 

  8. Idem, ibid 5 (1971) 233.

    Google Scholar 

  9. Idem, Met. Trans. 2 (1971) 2973.

    Google Scholar 

  10. K. Mukherjee, F. Millio and M. Chandrasekaran, Mat. Sci. Eng. 14 (1974) 143.

    Google Scholar 

  11. G. R. Edwards, J. Perkins and J. M. Johnson, Scripta Met. 9 (1975) 1167.

    Google Scholar 

  12. J. Perkins, G. R. Edwards, C. R. Such and J. M. Johnson, in “Shape Memory Effects in Alloys” (Plenum Press, New York, 1975) p. 273.

    Google Scholar 

  13. R. J. Wasilewski, in “Shape Memory Effects in Alloys” (Plenum Press, New York, 1975) p. 245.

    Google Scholar 

  14. C. M. Jackson, H. J. Wagner and R. J. Wasilewski, “55-Nitinol — The Alloy with a Memory, its Physical Metallurgy, Properties and Applications”, NASA Report (1972) SP 5110.

  15. R. J. Wasilewski, S. R. Butler, J. E. Hanlon and D. Warden, Met. Trans. 2 (1971) 229.

    Google Scholar 

  16. G. D. Sandrock, A. J. Perkins and R. F. Hehemann, ibid 2 (1971) 2769.

    Google Scholar 

  17. K. Otsuka, T. Sawamura, K. Shimizu and C. M. Wayman, ibid 2 (1971) 2583.

    Google Scholar 

  18. H. Tas, L. Delaey and A. Deruyttere, ibid 3 (1973) 2833.

    Google Scholar 

  19. L. Delaey, R. V. Krishnan, H. Tas and H. Warlimont, J. Mater. Sci. 9 (1974) 1521.

    Google Scholar 

  20. K. Otsuka and K. Shimizu, Trans. Jap. Inst. Metals 15 (1974) 103.

    Google Scholar 

  21. K. Otsuka, T. Sawamura and K. Shimizu, Phys. Stat Sol. 5a (1971) 457.

    Google Scholar 

  22. S. P. Gupta and A. A. Johnson, Trans. Jap. Inst. Metals 14 (1973), 292.

    Google Scholar 

  23. R. V. Krishnan, L. Delaey, H. Tas and H. Warlimont, J. Mater. Sci. 9 (1974) 1536.

    Google Scholar 

  24. K. W. Andrews and W. Johnson, Brit. J. Appl. Phys. 6 (1955) 92.

    Google Scholar 

  25. T. A. Schroeder, I. Cornelis and C. M. Wayman, Met. Trans. 7A (1976) 535.

    Google Scholar 

  26. T. A. Schroeder and C. M. Wayman, Scripta Met. 10 (1976) 241.

    Google Scholar 

  27. K. Takezawa, T. Shindo and S. Sato, ibid 10 (1976) 13.

    Google Scholar 

  28. Z. S. Basinski and J. W. Cristian, Acta Met. 2 (1954) 101.

    Google Scholar 

  29. H. K. Birnbaum and T. A. Read, Trans. Met. Soc. AIME 218 (1960) 662.

    Google Scholar 

  30. K. Otsuka, Jap. J. Appl Phys. 10 (1971) 571.

    Google Scholar 

  31. H. Tas, L. Delaey and A. Deruyttere, J. Less Common Metals 28 (1972) 141.

    Google Scholar 

  32. A. Nagasawa, K. Enami, Y. Ishino, Y. Abe and S. Nenno, Scripta Met. 8 (1974) 1055.

    Google Scholar 

  33. J. Perkins, ibid 8 (1974) 1469.

    Google Scholar 

  34. T. Saburi and S. Nenno, ibid 8 (1974) 1363.

    Google Scholar 

  35. R. Oshima and K. Adachi, Jap. J. Appl. Phys. 14 (1975) 563.

    Google Scholar 

  36. R. J. Wasilewski, Scripta Met. 9 (1975) 417.

    Google Scholar 

  37. P. Hernandez and R. Banks, private communication (1975).

  38. C. M. Wayman and K. Shimizu, Mat. Sci. J., 6 (1972) 175.

    Google Scholar 

  39. D. S. Lieberman, “Phase Tranformation” (ASM, Metals Park, Ohio, 1970) p. 1.

    Google Scholar 

  40. D. S. Lieberman, M. A. Schmerling and R. W. Karz, in “Shape Memory Effects in Alloys” (Plenum Press, New York, 1975) p. 203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, H.A., Washburn, J. Deformation behaviour and shape memory effect of near equi-atomic NiTi alloy. J Mater Sci 12, 469–480 (1977). https://doi.org/10.1007/BF00540269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540269

Keywords

Navigation