Skip to main content
Log in

Dissolution process of surface oxide film during diffusion bonding of metals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two models of the dissolution process of surface oxide film in metals (copper and titanium) are described in order to estimate the dissolution time t s required for the oxide film to dissolve in the metals completely. One is based on impurity diffusion (model 1). The other is given by reaction diffusion (model 2). Model 1 was applied to estimate t s in copper and α-titanium but model 2 for t s of β-titanium because of the formation of α-phase. In these models, the dissolution process is assumed to be controlled by the oxygen diffusion in metals. Bonding tests were performed in order to verify the calculated results. The experimental results suggest that model 1 is valid in Cu-Cu bonding. Also, as for β-titanium, no retardation of the bonding process was observed. This was in agreement with model 2. However, for α-titanium below 1000 K, the retardation time was much longer than the dissolution time calculated by model 1, i.e. the retardation below 1000 K cannot be dictated by the diffusion-controlled process. A new model is therefore proposed. The dissociation rate of the oxide film is taken into account in the new model. This new model can explain the retardation of the bonding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nishiguchi and Y. Takahashi, Q. J. Jpn. Welding Soc. 3 (2) (1985) 303.

    Google Scholar 

  2. B. Derby and E. R. Wallach, Met. Sci. J. 16 (1982) 49.

    Google Scholar 

  3. F. B. Swinkels and M. F. Ashby, Acta Metall. 29 (1981) 259.

    Google Scholar 

  4. K. Masumoto, K. Tamaki, K. Terai and Y. Nagai, Bull. Jpn. Inst. Met. 9 (1970) 653.

    Google Scholar 

  5. T. Enjo and K. Ikeuchi, ibid. 21 (1982) 959.

    Google Scholar 

  6. Z. A. Munir, Welding J. 62 (12) (1983) 333s.

  7. W. A. Bryant, ibid. 54 (12) (1975) 433s.

  8. P. J. Heath and P. E. Evans, J. Mater. Sci. 9 (1974) 1955.

    Google Scholar 

  9. T. Watanabe and Y. Horikoshi, Int. J. Powder Metall. Tech. 12 3 (1976) 209.

    Google Scholar 

  10. P. K. Higgins and Z. A. Munir, Powder Metall. 21 (4) (1978) 188.

    Google Scholar 

  11. O. Ohashi, K. Tanuma and T. Kimura, Q. J. Jpn. Welding Soc. 4 (1) (1986) 53.

    Google Scholar 

  12. T. Enjo, K. Ikeuchi and K. Furukawa, Trans. JWRI 14 (1) (1985) 115.

    Google Scholar 

  13. Z. A. Munir, J. Mater. Sci. 14 (1979) 2733.

    Google Scholar 

  14. O. Ohashi, K. Tanuma and K. Yoshihara, Q. J. Jpn. Welding Soc. 3 (3) (1985) 41.

    Google Scholar 

  15. J. R. Manning, in “Diffusion Kinetics for Atoms in Crystals” 1st. Edn (Van Nostrand, London, 1968) p. 18.

    Google Scholar 

  16. K. P. Gurov, V. N. Pimenov and Y. E. Ugaste, Fiz. Metal. Metalloved. 32 (1) (1971) 103.

    Google Scholar 

  17. Y. Funamizu and K. Watanabe, J. Jpn. Light Met. Soc. 25 (5) (1975) 179.

    Google Scholar 

  18. E. A. Moelwyn-Hughes, “The Kinetics of Reaction in Solution”, 2nd Edn (Oxford University Press, London, 1947) p. 357.

    Google Scholar 

  19. P. G. Shewmon, “Diffusion in Solids” (McGraw-Hill, New York, 1963) p. 12.

    Google Scholar 

  20. K. Nishiguchi, Y. Takahashi and A. Seo, Q. J. Jpn. Welding Soc. 8 (3) (1990) 40.

    Google Scholar 

  21. G. B. Gibbs, J. Nuclear Mater. 20 (1966) 303.

    Google Scholar 

  22. F. N. Rhines and C. H. Mathewson, Trans. Amer. Inst. Min. Met. Eng. 111 (1934) 337.

    Google Scholar 

  23. “Metals Handbook”, 3rd Edn, edited by Japan Metal Society (Maruzen, Tokyo, 1960) p. 1292.

    Google Scholar 

  24. “Metal Data Book”, edited by Japan Metal Society (Maruzen, Tokyo, 1974) p. 479.

    Google Scholar 

  25. B. Tamamushi et al., in “Dictionary of Physics and Chemistry”, 3rd Edn (Yuwanami-shoten, Tokyo, 1976) p. 515.

    Google Scholar 

  26. Idem, ibid. p. 514, or “Handbook of Physics and Chemistry”, 67th Edn, edited by R. C. Weast et al. (CRC Press, USA, 1986–1987) p. B-140.

    Google Scholar 

  27. “Metal Data Book”, edited by Japan Metal Society (Maruzen, Tokyo, 1974) p. 9.

    Google Scholar 

  28. F. Bouillon and J. Orszagh, Soc. Chim. Belg. 78 (1969) 445, or in Diffusion Data 4 (2) (1970) 192.

    Google Scholar 

  29. V. I. Tikhomirov and V. I. Dxachov, Zh. Prikl. Khim. 40 (1967) 2405, or Diffusion Data 2 (3/4) (1968) 308.

    Google Scholar 

  30. L. E. Sokirianski, D. V. Ignatov and A. Y. Shinyaev, Fiz. Metal. Metalloved. 28 (2) (1969) 287.

    Google Scholar 

  31. O. Ohashi and T. Hashimoto, J. Jpn. Welding Soc. 45 (1976) 295.

    Google Scholar 

  32. R. F. Tylecote, D. Howd and J. E. Furmidge, Br. Welding J. (1958) 21.

  33. O. Ohashi, K. Tanuma, and K. Yoshihara, Q. J. Jpn. Welding Soc. 3 (1) (1985) 153.

    Google Scholar 

  34. B. Derby and E. R. Wallach, J. Mater. Sci. 19 (1984) 3140.

    Google Scholar 

  35. W. H. King and W. A. Owczarski, Welding J. 46 (1967) 289s.

  36. G. Petzow, in “Metallographisches Atzen” (Gebruder Borntraeger, Berlin, Japanese edition published by AGNE, Tokyo, 1976) p. 63 for Cu, p. 95 for Ti.

  37. I. V. Kragelsky and N. B. Demkin, Wear 3 (1960) 170.

    Google Scholar 

  38. K. Nishiguchi and Y. Takahashi, Q. J. Jpn. Welding Soc. 3 (2) (1985) 309.

    Google Scholar 

  39. S. Glasstone, K. J. Laidler and H. Eyring, in “The Theory of Rate Processes” (McGraw-Hill, New York, 1964) pp. 1 and 21.

    Google Scholar 

  40. J. Crank, “The Mathematics of Diffusion”, 2nd Edn (Clarendon Press, Oxford, 1975) p. 36.

    Google Scholar 

  41. G. D. Smith, in “Numerical Solution of Partial Differential Equations” (Oxford University Press, Oxford, 1965) p. 29.

    Google Scholar 

  42. H. Tokawa, in “Numerical Analysis and Simulation” (Kyouritsu, Tokyo, 1976) p. 65.

    Google Scholar 

  43. D. R. Gaskell, “Introduction to Metallurgical Thermodynamics”, 2nd Edn (McGraw-Hill, New York, 1981) p. 586.

    Google Scholar 

  44. O. Kubaschewski and C. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn (Pergamon, Oxford, 1979) p. 316.

    Google Scholar 

  45. P. Strobel and Y. L. Page, J. Mater. Sci. 17 (1982) 2424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, Y., Nakamura, T. & Nishiguchi, K. Dissolution process of surface oxide film during diffusion bonding of metals. J Mater Sci 27, 485–498 (1992). https://doi.org/10.1007/BF00543942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543942

Keywords

Navigation