Skip to main content
Log in

An examination of statistical theories for fibrous materials in the light of experimental data

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have analysed experimental data on the tensile strength of carbon fibres and bundles of parallel carbon fibres. These data are used to assess whether theoretical relations between the strengths of fibres and different kinds of bundles are consistent with experiment. The analysis confirms the presence of a hybrid effect, and also that the classical Weibull relations between strength and length are not apparently satisfied for bundles. It is suggested that the latter observation might be an effect of the random variation of fibre diameter, and some consequences of this are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

y :

tensile stress

L, L1, L2 :

length of fibre or bundle

F(y; L) :

failure probability (single fibre)

f(y; L) :

density of failure stress, i.e. δF/δy

\(\left. {\begin{array}{*{20}c} {\mu ,y_1 ,\varrho ,} \\ {y_L ,\varrho _L ,y'_L ,} \\ {\varrho '_L } \\ \end{array} } \right\}\) :

parameters of F

l :

likelihood function

Y i :

datum (failure stress in ith specimen)

κ 2 v :

chi-square distribution with v degrees of freedom

χ 2υ,α :

percentage point of χ 2υ (i.e. if X has distribution χ 2υ then P{X > χ 2υ,α })

y *, μ*, σ * N :

defined from F(y, L), 0⩽y<∞ (used in dry bundles analysis)

G N (y; L) :

failure probability for a bundle of N fibres

δ :

ineffective length

m :

= L/δ: number of segments in chain-of-bundles model

K k :

stress concentration coefficient when k consecutive failures

q k :

number of neighbours having stress concentration Kk

k * :

critical number of consecutive failures

y *1 , ϱ* :

Weibull parameters for bundles

α, α * :

powers of L in modified model for fibres and bundles, respectively

β :

cross-sectional area of fibre

F(y; L, β) :

failure probability conditional on β

\(\left. {\begin{array}{*{20}c} {\mu ,y_0 ,\gamma ,} \\ {\eta ,c,c*} \\ \end{array} } \right\}\) :

parameters of modified model

g, g1 :

densities of β and β η

¯g, ¯g1 :

Laplace transforms of g, g1

E :

mathematical expectation

References

  1. H. E. Daniels, Proc. R. Soc. A 183 (1945) 404.

    Google Scholar 

  2. B. W. Rosen, AIAA J. 2 (1964) 1985.

    Article  Google Scholar 

  3. C. Zweben, ibid. 6 (1968) 2325.

    Article  Google Scholar 

  4. D. G. Harlow and S. L. Phoenix, Int. J. Fracture 17 (1981) 347.

    Article  Google Scholar 

  5. Idem, ibid. 17 (1981) 601.

    Article  Google Scholar 

  6. R. L. Smith, Proc. R. Soc. A 372 (1980) 539.

    Article  Google Scholar 

  7. R. L. Smith, S. L. Phoenix, M Greenfield, R. B. Henstenburg and R. Pitt, ibid. 388 (1983) 353.

    Article  Google Scholar 

  8. S. B. Batdorf, J. Reinf. Plast. Compos. 1 (1982) 153.

    Article  Google Scholar 

  9. M. G. Bader and A. M. Priest, in “Progress in Science and Engineering of Composites”, edited by T. Hayashi, K. Kawata and S. Umekawa (Japanese Society for Composite Materials, Tokyo, 1982) p. 1129.

    Google Scholar 

  10. P. W. Manders and M. G. Bader, J. Mater. Sci. 16 (1981) 2233.

    Article  CAS  Google Scholar 

  11. Idem, ibid. 16 (1981) 2246.

    Article  Google Scholar 

  12. P. W. Manders, M. G. Bader and T.-W. Chou, Fib. Sci. Tech. 17 (1982) 183.

    Article  Google Scholar 

  13. S. B. Batdorf and R. Ghaffarian, J. Reinf. Plast. Compos. 1 (1982) 165.

    Article  Google Scholar 

  14. W. Weibull, Proc. Ing. Vetenskapsadak 151 (1939).

  15. L. N. McCartney and R. L. Smith, J. Appl. Mech. 105 (1983) 601.

    Article  Google Scholar 

  16. R. A. Fisher and L. H. C. Tippett, Proc. Camb. Phil. Soc. 24 (1928) 180.

    Article  Google Scholar 

  17. M. G. Kendall and A. Stuart, “The Advanced Theory of Statistics”, Vol. 2, 3rd edn. (Griffin, London, 1973).

    Google Scholar 

  18. A. S. Watson, unpublished MSc dissertation, Imperial College (1983).

  19. S. L. Phoenix and H. M. Taylor, Adv. Appl. Prob. 5(1973) 200.

    Article  Google Scholar 

  20. R. L. Smith, Ann. Prob. 10 (1982) 137.

    Article  Google Scholar 

  21. J. M. Hedgepeth and P. Van Dyke, J. Compos. Mater. 1 (1967) 294.

    Article  Google Scholar 

  22. H. Fukuda, J. Mater. Sci. 19 (1984) 974.

    Article  CAS  Google Scholar 

  23. D. G. Harlow, Proc. R. Soc. A 389 (1983) 67.

    Article  Google Scholar 

  24. W. Feller, “An Introduction to Probability Theory and Its Applications”, Vol. 2, 2nd edn. (Wiley, New York, 1971).

    Google Scholar 

  25. N. G. De Bruijn, Nieuw. Arch. Wisk. 7 (1959) 20.

    Google Scholar 

  26. N. H. Bingham, C. M. Goldie and J. L. Teugels, “Regular variation” (Cambridge University Press) in press.

  27. S. L. Phoenix, H. D. Wagner and P. Schwartz, Cornell University manuscript MSD-83-01 (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, A.S., Smith, R.L. An examination of statistical theories for fibrous materials in the light of experimental data. J Mater Sci 20, 3260–3270 (1985). https://doi.org/10.1007/BF00545193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00545193

Keywords

Navigation