Skip to main content
Log in

The effect of particle shape on the mechanical properties of filled polymers

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The existing models for predicting the elastic moduli of polymers dispersed with particles of shape other than spheres and continuous fibres are reviewed. The applicability and limitation of these equations are discussed. The emphasis of the review is to seek a unified understanding and approach to the effect of particle shape at finite concentration on the elastic moduli, thermal expansion coefficient, stress concentration factor, viscoelastic relaxation modulus and creep compliance of filled polymers. The effects of anisotropic particle shape on mechanical properties of polymeric composites are clearly illustrated. Attention is also drawn to the relationship between elastic moduli, thermal expansion, creep elongation and stress relaxation moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Manson and L. H. Sperling, “Polymer Blends and Composites” (Plenum Press, New York, 1976) Ch. 12.

    Google Scholar 

  2. G. P. Sendeckyi, “Composite Materials”, Vol. 2 (Academic Press, New York, 1974) Chs. 3 to 4.

    Google Scholar 

  3. J. L. Kardos, Crit. Rev. Solid. State Sci. 3 (1973) 419.

    Google Scholar 

  4. L. E. Nielsen, “Mechanical Properties of Polymers and Composites”, Vol. 2 (Marcel Dekker, New York, 1974).

    Google Scholar 

  5. M. Shen and H. Kawai, AIChE J. 24 (1978) 1.

    Google Scholar 

  6. R. C. Progelhof, J. L. Throne and R. R. Ruetsch, Polym. Eng. Sci. 16 (1976) 615.

    Google Scholar 

  7. J. L. Kardos, W. L. McDonnel and J. Raisoni, J. Macromol. Sci. Phys. B6 (1972) 397.

    Google Scholar 

  8. J. K. Lee, Polym. Eng. Sci. 8 (1968) 186.

    Google Scholar 

  9. K. Sato, Prog. Organic Coatings 4 (1976) 271.

    Google Scholar 

  10. L. E. Nielsen, J. Comp. Mater. 1 (1967) 100.

    Google Scholar 

  11. Y. S. Lipatov, Adv. Polymer Sci. 22 (1977) 1.

    Google Scholar 

  12. R. A. Dickie, in “Polymer Blends”, Vol. 1, edited by D. R. Paul and S. Newman (Academic Press, New York, 1978) Ch. 8.

    Google Scholar 

  13. R. Hill, J. Mech. Phys. Solids 13 (1965) 213.

    Google Scholar 

  14. J. J. Hermans, Proc. R. Acad. (Amsterdam) B 70 (1967) 1.

    Google Scholar 

  15. N. Law and R. McLaughlin, J. Mech. Phys. Solids 27 (1979) 1.

    Google Scholar 

  16. Z. Hashin and B. W. Rosen, J. Appl. Mech. 31 (1964) 223.

    Google Scholar 

  17. G. A. Van Fo Fy and G. N. Savin, Polymer Mech. 1 (1965) 106.

    Google Scholar 

  18. J. E. Ashton, J. C. Halpin and P. H. Petit, “Primer on Composite Materials: Analysis” (Technomic, Stamford, Conn., 1969) Ch. 5.

    Google Scholar 

  19. L. J. Broutman and R. H. Krock, “Modern Composite Materials” (Addison-Wesley, Reading, Mass., 1967).

    Google Scholar 

  20. L. Holliday and J. Robinson, J. Mater. Sci. 8 (1973) 301.

    Google Scholar 

  21. A. R. Von Hippel, “Molecular Science and Engineering” (M.I.T. Press, Cambridge, Mass., 1959).

    Google Scholar 

  22. M. Takayanagi, H. Harima and Y. Iwata, Rep. Prog. Polymer. Phys. (Japan) 6 (1963) 121.

    Google Scholar 

  23. E. Guth, J. Appl. Phys. 15 (1945) 20.

    Google Scholar 

  24. H. L. Frisch and R. Simha, in “Rhelogoy”, Vol. 1, edited by F. R. Eirich (1956) Ch. 14.

  25. W. Kuhn and H. Kuhn, Helv. Chim. Acta 28 (1945) 97.

    Google Scholar 

  26. L. E. Nielsen, J. Comp. Mater. 2 (1968) 120.

    Google Scholar 

  27. H. L. Cox, Brit. J. Appl. Phys. 3 (1952) 72.

    Google Scholar 

  28. A. Kelly, “Strong Solids”, 2nd edn. (Clarendon, Oxford, 1973) Ch. 5.

    Google Scholar 

  29. P. J. Barham and R. G. C. Arridge, J. Polymer Sci. Polymer Phys. ed. 15 (1977) 1177.

    Google Scholar 

  30. L. E. Nielsen, J. Appl. Phys. 41 (1970) 4626.

    Google Scholar 

  31. Idem, Ind. Eng. Chem. (Fundam.) 13 (1074) 17.

  32. Idem, J. Appl. Polymer Sci. 17 (1973) 3819.

    Google Scholar 

  33. T. S. Chow, J. Appl. Phys. 48 (1977) 4072.

    Google Scholar 

  34. Idem, J. Polymer Sci. Polymer Phys. ed. 16 (1978) 959.

    Google Scholar 

  35. Idem, ibid. 16 (1978) 967.

    Google Scholar 

  36. R. Hill, J. Mech. Phys. Solids 12 (1964) 199.

    Google Scholar 

  37. T. S. Chow and J. J. Hermans, J. Comp. Mater. 3 (1969) 382.

    Google Scholar 

  38. A. K. Mal and A. K. Chatterjee, J. Appl. Mech. 44 (1977) 61.

    Google Scholar 

  39. B. Budiansky, J. Mech. Phys. Solids 13 (1965) 223.

    Google Scholar 

  40. Z. Hashin and S. Shtrikman, ibid. 11 (1963) 127.

    Google Scholar 

  41. E. H. Kerner, Proc. Phys. Soc. (London) B 69 (1956) 808.

    Google Scholar 

  42. A. S. Kenyon and H. J. Duffey, Polymer. Eng. Sci. 7 (1970) 1.

    Google Scholar 

  43. J. M. Whitney and M. B. Riley, Tech. Report Air Force Materials Lab., TR-65-238, (December 1965), Wright-Patterson Air Force Base, Ohio, USA.

    Google Scholar 

  44. R. S. Porter, J. H. Southern and N. Weeks, Polymer Eng. Sci. 15 (1975) 213.

    Google Scholar 

  45. W. T. Mead and R. S. Porter, J. Appl. Phys. 47 (1976) 4278.

    Google Scholar 

  46. J. C. Halpin and J. L. Kardos, ibid. 43 (1972) 2235.

    Google Scholar 

  47. T. S. Chow, Polymer 20 (1979) 1576.

    Google Scholar 

  48. R. H. Edwards, J. Appl. Mech. 18 (1951) 19.

    Google Scholar 

  49. J. D. Eshelby, Proc. R. Soc. (London) A241 (1957) 376.

    Google Scholar 

  50. Idem, ibid. A252 (1959) 561.

    Google Scholar 

  51. W. B. Russel and A. Acrivos, Z. Angew. Math. Phys. 23 (1972) 434.

    Google Scholar 

  52. W. B. Russel, ibid. 24 (1973) 581.

    Google Scholar 

  53. T. T. Wu, Int. J. Solids Struct. 2 (1966) 1.

    Google Scholar 

  54. L. J. Walpole, J. Mech. Phys. Solids 17 (1969) 235.

    Google Scholar 

  55. R. A. Dickie, J. Polymer Sci. Polymer Phys. ed. 14 (1976) 2073.

    Google Scholar 

  56. J. C. Smith, Polymer. Eng. Sci. 16 (1976) 394.

    Google Scholar 

  57. C. Van Der Poel, Rheol. Acta 1 (1958) 198.

    Google Scholar 

  58. R. A. Schapery, J. Comp. Mater. 2 (1968) 380.

    Google Scholar 

  59. P. S. Turner, J. Res. Nat. Bur. Stand. 37 (1946) 239.

    Google Scholar 

  60. T. T. Wang and T. K. Kwei, J. Polymer Sci. A2 7 (1969) 889.

    Google Scholar 

  61. N. Law, J. Mech. Phys. Solids 21 (1973) 9.

    Google Scholar 

  62. J. N. Goodier, J. Appl. Mech. 1 (1933) 39.

    Google Scholar 

  63. A. S. Argon, Fibre Sci. Tech. 9 (1976) 265.

    Google Scholar 

  64. N. Law and R. McLaughlin, Proc. R. Soc. (London) A359 (1978) 251.

    Google Scholar 

  65. W. Flugge, “Viscoelasticity” (Blaisdell, Waltham, Mass., 1967).

    Google Scholar 

  66. R. A. Schapery, J. Comp. Mater. 1 (1967) 228.

    Google Scholar 

  67. R. A. Dickie, J. Appl. Polymer Sci. 17 (1973) 45.

    Google Scholar 

  68. M. Takayanagi, S. Nemura and S. Minami, J. Polymer Sci. C5 (1964) 113.

    Google Scholar 

  69. Z. Hashin, Int. J. Solid Struct. 6 (1970) 539.

    Google Scholar 

  70. F. R. Schwarzl, H. W. Bree, C. J. Nederveen, G. A. Schwippert, L. C. E. Struik and C. W. Van Der Wal, Rheol. Acta 5 (1966) 270.

    Google Scholar 

  71. L. E. Nielsen, Trans. Soc. Rheol. 13 (1969) 141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, T.S. The effect of particle shape on the mechanical properties of filled polymers. J Mater Sci 15, 1873–1888 (1980). https://doi.org/10.1007/BF00550613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550613

Keywords

Navigation