Skip to main content
Log in

Mechanical properties of the Sn-Zn eutectic alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structure and mechanical properties of Sn-Zn unidirectionally frozen eutectic alloys have been examined over the growth range 5 to 4000mm h−1. The structure is predominantly broken-lamellar below 750mm h−1 but becomes increasingly fibrous at higher growth rates. The yield and ultimate strengths when tested in tension and compression were found to increase monotonically with growth rates up to 1000 mm h−1 above which they assumed near constant values. This behaviour is attributed to some loss of axial growth at higher growth rates. The hardness measured on transverse sections increased over the entire growth rate range. Annealing at near eutectic temperatures followed by quenching increased the strength of alloys grown at less than 750 mm h−1 and decreased that of those grown at higher rates. Similar behaviour was observed in selected Cd-Zn eutectic alloys. The increase in strength is attributed to solid solution hardening and the reduction to structural degradation during annealing. The Sn-rich matrix in this broken-lamellar eutectic appears to contribute significant strengthening to the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. N. Crocker, R. S. Fidler and R. W. Smith, Proc. Roy. Soc. A335 (1973) 15.

    Google Scholar 

  2. M. N. Crocker, M. Mcparlan, D. Baragar and R. W. Smith, J. Crystal Growth 29 (1975) 85.

    Google Scholar 

  3. M. N. Crocker, D. Baragar and R. W. Smith, ibid. 30 (1975) 198.

    Google Scholar 

  4. M. Sahoo and R. W. Smith, Metal Science 9 (1975) 217.

    Google Scholar 

  5. Idem, Can. Met. Quart. 15 (1976) 1.

    Google Scholar 

  6. Idem, J. Mater. Sci. 11 (1976) 1125.

    Google Scholar 

  7. Idem, ibid. 11 (1976) 1680.

    Google Scholar 

  8. Idem, ibid. 13 (1978) 283.

    Google Scholar 

  9. Idem, ibid. 13 (1978) 1565.

    Google Scholar 

  10. M. Sahoo, G. W. Delamore and R. W. Smith, ibid. 15 (1980) 1097.

    Google Scholar 

  11. R. P. Elliot, “Constitution of Binary Alloys”, First Supplement, (McGraw Hill Inc., New York, 1965).

    Google Scholar 

  12. P. J. Taylor, H. W. Kerr and W. C. Winegard, Can. Met. Quart. 3 (1964) 235.

    Google Scholar 

  13. H. W. Kerr and W. C. Winegard, Can. Met. Quart. 6 (1967) 67.

    Google Scholar 

  14. R. W. Fidler, J. A. Spittle, M. R. Taylor and R. W. Smith, Publication 110 (The Solidification of Metals, Iron and Steel Inst., London, 1968) p. 173.

    Google Scholar 

  15. D. Jaffrey and G. A. Chadwick, Trans. Met. Soc. of AIME 245 (1969) 2435.

    Google Scholar 

  16. G. A. Chadwick, J. of Metals 92 (1963–4) 18.

    Google Scholar 

  17. W. A. Tiller, “Liquid Metals and Solidification” (American Society for Metals, Metals Park, Ohio, 1958) p. 276.

    Google Scholar 

  18. W. A. Tiller and R. Mrdjenovich, J. Appl. Phys. 34 (1963) 3639.

    Google Scholar 

  19. F. Vnuk, M. Sc. Thesis, University of Birmingham, 1968.

  20. B. F. Dyson, J. App. Phys. 37 (1966) 2375.

    Google Scholar 

  21. F. H. Huang and H. B. Huntingdon, Phys. Rev. B. 9 (1974) 1479.

    Google Scholar 

  22. F. Vnuk, M. H. Ainsley and R. W. Smith, unpublished work.

  23. R. S. Fidler, Ph.D. Thesis, Birmingham University, 1969.

  24. R. Elliot and A. Moore, Scripta Met. 3 (1969) 249.

    Google Scholar 

  25. R. W. Smith, “The Solidification of Metals” Iron and Steel Inst. Special Report, London, 110 (1968) 226.

    Google Scholar 

  26. D. Baragar, M. Sahoo, and R. W. Smith, “Solidification of Metals and Castings” (The Metals Society, London, 1979) p. 88.

    Google Scholar 

  27. H. Bibring, Proceedings of the Conference on In-Situ Composites, Vol. II (National Academy of Eng., Washington, D.C., 1973), p. 1.

    Google Scholar 

  28. H. B. Huntingdon, Solid State Phys. I (1958) 278.

    Google Scholar 

  29. “Properties of Tin” (Tin Research Institute, Middlesex, England, 1954) p. 42.

  30. “Advances in Materials Research”, edited by Herbert Herman, Vol. 5 (Willey-Interscience, New York, 1971), p. 134.

    Google Scholar 

  31. R. V. Coleman, B. Price and N. Cabreva, J. App. Phys 28 (1957) 1360.

    Google Scholar 

  32. D. Tabor, “The Hardness of Metals” (Oxford University Press, Oxford, 1951) p. 107.

    Google Scholar 

  33. J. R. Cahoon, Met. Transactions 3 (1972) p. 3040.

    Google Scholar 

  34. R. Van Der Merwe, M. Sahoo, R. W. Smith, Conference on In-Situ Composites-III (Ginn Custom Publishing, Lexington, 1979) 107.

    Google Scholar 

  35. Idem, Ph.D. Thesis, Queen's University, 1980.

  36. R. W. Smith, unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vnuk, F., Sahoo, M., Baragar, D. et al. Mechanical properties of the Sn-Zn eutectic alloys. J Mater Sci 15, 2573–2583 (1980). https://doi.org/10.1007/BF00550762

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550762

Keywords

Navigation