Skip to main content
Log in

Negative creep and recovery during high-temperature creep of MgO single crystals at low stresses

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-temperature creep equipment with very high precision has been used to measure the creep of MgO single crystals above 1948 K and stresses lower than 4 MPa. A transition in exponent,n, from 3 at stresses higher than 2 MPa to almost unity at lower stress region was observed. Since in a single crystal deformation can only occur by the generation and movement of dislocations, the transition in stress exponent from high to low stress region cannot be interpreted in terms of a change from dislocation to diffusional creep processes. Decreasing the stress by a small amount during steady-state creep resulted in an incubation period of zero creep rate before creep commenced at lower stress. However, large stress reduction led to a period of negative creep during which the dislocation substructure coarsens and the subgrain cell boundaries straighten. On the basis of dislocation substructure studies, it is proposed that the kinetics of backflow are thought to be based on the local network refinement caused by the reverse movement of dislocations and that recovery is necessary before further movement of dislocation can occur. It is shown that the network theory proposed by Davis and Wilshire can satisfactorily account for all stress reduction observed during forward creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Orowan andJ. West,Scotland Iron Steel Inst 45 (1946) 54.

    Google Scholar 

  2. S. K. Mitra andD. McLean,Proc. Roy Soc A 295 (1966) 288.

    CAS  Google Scholar 

  3. P. W. Davies andB. Wilshire,Scripta Metall 5 (1971) 475.

    Article  Google Scholar 

  4. P. L. Threadgill andB. Wilshire,Met. Sci. 8 (1974) 117.

    CAS  Google Scholar 

  5. J. M. Brich andB. Wilshire,Proc. Brit. Ceram. Soc. 25 (May 1975) 227.

    Google Scholar 

  6. P. W. Davies, G. Nelmes, K. R. Williams andB. Wilshire,Met. Sci. J. 7 (1973) 37.

    Google Scholar 

  7. C. N. Ahlquist andW. D. Nix,Scripta Metall. 3 (1969) 679.

    Article  Google Scholar 

  8. W. Blum, J. Hausselt andG. Konig,Acta Metall. 24 (1976) 293.

    Article  CAS  Google Scholar 

  9. E. Yasuda, K. S. Ramesh andS. Kimura, 1st International Conference on Refractories preprint November (The Technical Association of Refractories, Japan, 1983) p. 171.

    Google Scholar 

  10. J. D. Baird,Jernkoniorests Ann. 155 (1971) 311.

    CAS  Google Scholar 

  11. K. R. Williams andB. Wilshire,Met. Sci. 7 (1973) 176.

    Article  CAS  Google Scholar 

  12. B. Sidey andB. Wilshire,Met. Sci. J. 3 (1969) 56.

    CAS  Google Scholar 

  13. J. M. Brich andB. Wilshire,J. Mater. Sci. 9 (1974) 794.

    Article  Google Scholar 

  14. P. J. Dixon-Stubbs andB. Wilshire,Phil. Mag. A45 (1982) 519.

    Google Scholar 

  15. C. R. Barrett, E. C. Muehlersen andW. D. Nix,Mater. Sci. Eng. 10 (1972) 33.

    Article  CAS  Google Scholar 

  16. T. Bretheau andC. Dolin,J. Mater. Sci. 13 (1978) 587.

    Article  CAS  Google Scholar 

  17. T. Hasegawa, R. Hasegawa andS. Krashima,Trans. Jpn. Inst. Metals 11 (1970) 101.

    CAS  Google Scholar 

  18. A. H. Clauer, M. S. Seltzer andB. A. Wilcox,J. Mater. Sci. 6 (1971) 1379.

    Article  CAS  Google Scholar 

  19. W. Blum andB. Ilschner,Phys. Status Solidi 20 (1967) 33.

    Google Scholar 

  20. J. P. Poirier,Phil. Mag. 26 (1972) 701.

    CAS  Google Scholar 

  21. V. Pontikis andJ. P. Poirier,Scripta Metall. 8 (1974) 1427.

    Article  CAS  Google Scholar 

  22. J. C. Gibeling andW. D. Nix,Acta Metall. 29 (1981) 1769.

    Article  CAS  Google Scholar 

  23. S. F. Excell andD. H. Warrington,Phil. Mag. 26 (1972) 1121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, K.S., Yasuda, E. & Kimura, S. Negative creep and recovery during high-temperature creep of MgO single crystals at low stresses. J Mater Sci 21, 3147–3152 (1986). https://doi.org/10.1007/BF00553350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553350

Keywords

Navigation