Skip to main content
Log in

Hypothetical mechanism of crazing in glassy plastics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crazing in glassy plastics is attributed to a stress-activated devitrification of a small amount of material at the tip of a chance nick or flaw, to a softer rubbery state. Subsequent cavitation of the softened material is then assumed to take place under the action of the same dilatant stress responsible for its formation. A transition to ductile yielding is proposed to occur when the material in the tip region undergoes large deformations before softening.

The proposed mechanism of crazing is shown to provide quantitative predictions for the magnitude of tensile stress at which crazing occurs, the increase in crazing stress with hydrostatic pressure, the transition at high pressures to a yielding process without crazing, the reduction in crazing stress in the presence of certain liquids and vapours and, to some extent, for the effects of temperature and pre-orientation. These theoretical predictions are found to be in reasonably satisfactory agreement with experiment. In view of the limited number of adjustable parameters in the theory (the principal one being the stress-magnification factor associated with a typical nick or flaw), this general agreement over a wide range of experimental conditions and variables suggests that the proposed mechanism of stress-crazing is basically correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Maxwell andL. F. Rahm,Ind. Eng. Chem. 41 (1949) 1988.

    Google Scholar 

  2. C. C. Hsiao andJ. A. Sauer,J. Appl. Phys. 21 (1950) 1071.

    Google Scholar 

  3. O. K. Spurr, Jr, andW. D. Niegisch,J. Appl. Polymer Sci. 6 (1962) 585.

    Google Scholar 

  4. R. P. Kambour,Polymer 5 (1964) 143.

    Google Scholar 

  5. Idem, J. Polymer Sci. A2 (1964) 4159.

    Google Scholar 

  6. B. Biglione, E. Baer, andS. V. Radcliffe, “Fracture 1969: Proceedings of the Second International Conference on Fracture, Brighton, April 1969” (Chapman and Hall, London, 1969) p. 503.

    Google Scholar 

  7. D. R. Mears, andK. D. Pae,Polymer Letters 7 (1969) 349.

    Google Scholar 

  8. R. N. Haward, B. M. Murphy, andE. F. T. White, “Fracture 1969: Proceedings of the Second International Conference on Fracture, Brighton, April 1969” (Chapman and Hall, London, 1969) p. 519.

    Google Scholar 

  9. S. S. Sternstein andL. Ongchin, A.C.S. Polymer Preprints (Sept. 1969).

  10. E. E. Ziegler,SPE Journal 10 (4) (1954) 12.

    Google Scholar 

  11. I. Wolock andD. George,ibid 12 (2) (1956) 20.

    Google Scholar 

  12. E. H. Andrews andL. Bevan, “Physical Basis of Yield and Fracture” (Institute of Physics & Physical Society, London 1967) p. 209.

    Google Scholar 

  13. G. A. Bernier andR. P. Kambour,Macromolecules 1 (1968) 393.

    Google Scholar 

  14. E. F. T. White, B. M. Murphy, andR. N. Haward,J. Polymer Sci. Part B7 (1969) 157.

    Google Scholar 

  15. A. C. Knight,ibid, Part A3 (1965) 1845.

    Google Scholar 

  16. J. D. Ferry andR. A. Stratton,Kolloid Z. 171 (1960) 107.

    Google Scholar 

  17. S. Newman andS. Strella,J. Appl. Polymer Sci. 9 (1965) 2297.

    Google Scholar 

  18. M. H. Litt andA. V. Tobolsky,J. Macromolecular Sci. B1 (1967) 433.

    Google Scholar 

  19. K. C. Rusch andR. H. Beck, Jr,ibid B3 (1969) 365.

    Google Scholar 

  20. C. E. Inglis,Trans. Instn. Naval Archit. 55 (1913) 219.

    Google Scholar 

  21. A. E. H. Love, “A Treatise on the Mathematical Theory of Elasticity”, 4th ed. (Cambridge University Press, London 1927).

    Google Scholar 

  22. M. S. Paterson,J. Appl. Phys. 35 (1964) 176.

    Google Scholar 

  23. J. D. Ferry, “Viscoelastic Properties of Polymers” (John Wiley and Sons, New York, 1961).

    Google Scholar 

  24. E. Passaglia andG. M. Martin,J. Res. Nat. Bur. Standards 68A (1964) 273.

    Google Scholar 

  25. A. N. Gent, andP. B. Lindley,Proc. Roy. Soc. (London) A249 (1958) 195.

    Google Scholar 

  26. A. N. Gent andD. A. Tompkins,J. Polymer Sci., Part A-27 (1969) 1483.

    Google Scholar 

  27. C. W. Stewart,ibid, Part A-28 (1970) 937.

    Google Scholar 

  28. A. N. Gent, andD. A. Tompkins,J. Appl. Phys. 40 (1969) 2520.

    Google Scholar 

  29. F. Bueche, “Physical Properties of Polymers” (Interscience, New York, 1962).

    Google Scholar 

  30. L. R. G. Treloar, “Physics of Rubber Elasticity”, 2nd. ed. (Oxford University Press, London, 1958) chap. 7.

    Google Scholar 

  31. E. H. Andrews andL. Bevan, Private communication.

  32. D. W. Hadley, P. R. Pinnock andI. M. Ward,J. Mater. Sci. 4 (1969) 152.

    Google Scholar 

  33. C. Bridle, A. Buckley, andJ. Scanlan,ibid 3 (1968) 622.

    Google Scholar 

  34. M. W. Darlington andD. W. Saunders,J. Phys. D: Appl. Phys. 3 (1970) 535.

    Google Scholar 

  35. D. Hull, Private communication.

  36. F. A. Mcclintock,J. Appl. Mech. 35 (1968) 363.

    Google Scholar 

  37. J. R. Rice andD. M. Tracey,J. Mech. Phys. Solids 17 (1969) 201.

    Google Scholar 

  38. K. C. Rusch,J. Macromol. Sci. B2 (2) (1969) 179.

    Google Scholar 

  39. S. S. Sternstein, L. Ongchin, andA. Silverman Appl. Polymer Symposia, No. 7. (1968) 175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave of absence from the University of Akron, Ohio, for the year 1969–70.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gent, A.N. Hypothetical mechanism of crazing in glassy plastics. J Mater Sci 5, 925–932 (1970). https://doi.org/10.1007/BF00558171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00558171

Keywords

Navigation