Skip to main content
Log in

Fracture indentation beneath flat and spherical punches

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanics of crack initiation and propagation beneath an axisymmetric flat punch are investigated. The stress tensor given by Sneddon in 1946 is described. Numerical integration along stress trajectories gives the strain energy release rate as a function of both the crack length and its position relative to the indenter. Comparison with Hertzian fracture is made. The initiation of crack outside the circle of contact is shown to be due to the steepest gradient of stresses along the flaws near the circle of contact. The meaning of Auerbach's law is discussed. The Auerbach range is shown to correspond to the relatively flat maximum of the envelope of theG againstc/a curves for various starting radii. The influence of subcritical crack growth is also discussed. The model proposed in 1978 by Maugis and Barquins for kinetics of crack propagation between punches and viscoelastic solids is used. It is assumed that the static fatigue limit corresponds to the true Griffith criterion with intrinsic surface energy γ, and that the critical strain energy release rateG c corresponds to a criterion for crack speed instability and velocity jump, so that no stress corrosion is needed to explain subcritical crack growth for 2γ<G<G c. The 1971 experimental results of Mikosza and Lawn are easily interpreted by this model. Finally, experiments performed on a borosilicate glass give results that agree satisfactorily with the theory. Due to kinetic effects, an apparent surface energy of about 4.5 J m−2 is obtained, larger than the intrinsic surface energy and slightly lower than the fracture energy derived from high-speed experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Auerbach,Ann. Phys. Chem. 43 (1891) 61.

    Google Scholar 

  2. M. T. Huber,Ann. Physik 14 (1904) 153.

    Google Scholar 

  3. A. E. H. Love,Phil. Trans. 228 (1929) 377.

    Google Scholar 

  4. F. C. Frank andB. R. Lawn,Proc. Roy. Soc. A299 (1967) 291.

    Google Scholar 

  5. B. R. Lawn andT. R. Wilshaw,J. Mater. Sci. 10 (1975) 1049.

    Google Scholar 

  6. R. Warren,Acta Metall. 26 (1978) 1759.

    Google Scholar 

  7. F. C. Roesler,Proc. Phys. Soc B 69 (1956) 981.

    Google Scholar 

  8. C. J. Culf,J. Soc. Glass. Techn. 41 (1957) 157.

    Google Scholar 

  9. J. J. Benbow,Proc. Phys. Soc B 75 (1960) 697.

    Google Scholar 

  10. M. V. Swain andB. R. Lawn,Int. J. Fract. 9 (1973) 481.

    Google Scholar 

  11. B. R. Lawn andE. R. Fuller,J. Mater. Sci. 10 (1975) 2016.

    Google Scholar 

  12. J. S. Nadeau andA. S. Rao,J. Can. Ceram. Soc. 41 (1972) 63.

    Google Scholar 

  13. I. N. Sneddon,Proc. Camb. Phil. Soc. 42 (1946) 29.

    Google Scholar 

  14. M. Barquins andD. Maugis,J. Méch. Théor. Appl. 1 (1982) 331.

    Google Scholar 

  15. B. R. Lawn,J. Appl. Phys. 39 (1968) 4828.

    Google Scholar 

  16. S. Way,J. Appl. Mech. 7 (1940) 147.

    Google Scholar 

  17. B. R. Lawn andM. V. Swain,J. Mater. Sci. 10 (1975) 113.

    Google Scholar 

  18. G. I. Barenblatt,Adv. Appl. Mech. 7 (1962) 55.

    Google Scholar 

  19. J. R. Rice, “Fracture”, Vol. 2, edited by H. Liebovitz (Academic, New York, 1968) p. 222.

    Google Scholar 

  20. M. K. Kassir andG. C. Sih,J. Appl. Mech. 33 (1966) 601.

    Google Scholar 

  21. F. B. Langitan andB. R. Lawn,J. Appl. Phys 40 (1969) 4009.

    Google Scholar 

  22. T. R. Wilshaw,J. Phys. D: Appl. Phys. 4 (1971) 1567.

    Google Scholar 

  23. J. P. A. Tillet,Proc. Phys. Soc B 69 (1956) 47.

    Google Scholar 

  24. A. S. Argon, Y. Hori andE. Orowan,J. Amer. Ceram. Soc. 43 (1960) 86.

    Google Scholar 

  25. E. W. Sucov,ibid. 45 (1962) 214.

    Google Scholar 

  26. B. Hamilton andH. Rawson,J. Mech. Phys. Solids 18 (1970) 127.

    Google Scholar 

  27. K. L. Johnson, J. J. O'Connor andA. C. Woodward,Proc. Roy. Soc A334 (1973) 95.

    Google Scholar 

  28. H. Conrad, M. K. Keshavan andG. A. Sargent,J. Mater. Sci. 14 (1979) 1473.

    Google Scholar 

  29. H. L. Oh andI. Finnie,J. Mech. Phys. Solids 15 (1967) 401.

    Google Scholar 

  30. J. S. Nadeau,J. Amer. Ceram. Soc. 56 (1973) 467.

    Google Scholar 

  31. B. R. Lawn, T. R. Wilshaw andN. E. W. Hartley,Int. J. Fract. 10 (1974) 1.

    Google Scholar 

  32. B. D. Powell andD. Tabor,J. Phys. D: Appl. Phys. 3 (1970) 783.

    Google Scholar 

  33. Y. M. Tsai andH. Kolsky,J. Mech. Phys. Solids 15 (1967) 29.

    Google Scholar 

  34. F. C. Roesler,Proc. Roy. Soc. B69 (1956) 55.

    Google Scholar 

  35. G. M. C. Fisher,J. Appl. Phys. 38 (1967) 1781.

    Google Scholar 

  36. J. Harrison andJ. Wilks,J. Phys. D: Appl. Phys. 11 (1978) 73.

    Google Scholar 

  37. M. K. Keshavan, G. S. Sargent andH. Conrad,J. Mater. Sci. 15 (1980) 839.

    Google Scholar 

  38. J. V. Lewis andH. Rawson,Glass Technol. 17 (1976) 128.

    Google Scholar 

  39. H. Matzke, T. Inoue andR. Warren,J. Nucl. Mater. 91 (1980) 205.

    Google Scholar 

  40. H. Matzke andR. Warren,J. Mater. Sci. Lett. 1 (1982) 441.

    Google Scholar 

  41. U. C. B. O. Ejike,J. Elast. 11 (1981) 359.

    Google Scholar 

  42. D. Maugis andM. Barquins,J. Phys. D: Appl. Phys. 16 (1983) 1843.

    Google Scholar 

  43. R. E. Mould,J. Amer. Ceram. Soc. 43 (1960) 160.

    Google Scholar 

  44. R. E. Mould andR. D. Southwick,ibid. 42 (1959) 582.

    Google Scholar 

  45. E. K. Pavelchek andR. H. Doremus,J. Mater. Sci. 9 (1974) 1803.

    Google Scholar 

  46. D. N. Turner, P. D. Smith andW. B. Rotsey,J. Amer. Ceram. Soc. 50 (1967) 594.

    Google Scholar 

  47. M. M. Chaudhri andE. H. Yoffe,Phil. Mag. A44 (1981) 667.

    Google Scholar 

  48. H. Matzke,J. Mater. Sci. 15 (1980) 739.

    Google Scholar 

  49. J. A. Greenwood andJ. H. Tripp,J. Appl. Mech. 89 (1967) 153.

    Google Scholar 

  50. F. C. Yip andJ. E. S. Venart,J. Phys. D: Appl Phys. 4 (1971) 1470.

    Google Scholar 

  51. K. L. Johnson, “The mechanics of the contact between deformable bodies”, edited by A. D. De Pater and J. J. Kalker (Delft University Press, Rotterdam, 1975) p. 26.

    Google Scholar 

  52. B. D. Hughes andL. R. White,Trans. ASME 47 (1980) 194.

    Google Scholar 

  53. J. Kagami, K. Yamada andT. Hatazawa,Wear 87 (1983) 93.

    Google Scholar 

  54. F. B. Langitan andB. R. Lawn,J. Appl. Phys. 41 (1970) 3357.

    Google Scholar 

  55. A. G. Mikosza andB. R. Lawn,ibid. 42 (1971) 5540.

    Google Scholar 

  56. B. R. Lawn, “The science of hardness testing and its research applications”, edited by J. H. Westbrook and H. Conrad (ASM, Metals Park, 1973) p. 418.

    Google Scholar 

  57. D. Maugis,J. Mater. Sci. 20 (1985) in press.

  58. D. Maugis andM. Barquins,J. Phys. D: Appl. Phys. 11 (1978) 1989.

    Google Scholar 

  59. Idem, “Adhesion and adsorption of polymers”, Part A, edited by L. H. Lee (Plenum, New York, 1980) p. 203.

    Google Scholar 

  60. A. N. Gent andJ. Schultz,J. Adhes. 3 (1972) 281.

    Google Scholar 

  61. E. H. Andrews andJ. A. Kinloch,Proc. Roy. Soc. A332 (1973) 385.

    Google Scholar 

  62. D. Maugis, “Microscopic aspects of adhesion and lubrification”, edited by J. M. Georges (Elsevier, Amsterdam, 1982) p. 221.

    Google Scholar 

  63. S. M. Wiederhorn, E. R. Fuller andR. Thomson,Met. Sci. 14 (1980) 450.

    Google Scholar 

  64. S. M. Wiederhorn,J. Amer. Ceram. Soc. 52 (1969) 99.

    Google Scholar 

  65. S. M. Wiederhorn, H. Johnson, A. M. Diness andA. H. Heuer,ibid. 57 (1974) 336.

    Google Scholar 

  66. S. M. Wiederhorn andL. H. Boltz,ibid. 53 (1970) 543.

    Google Scholar 

  67. S. M. Wiederhorn, “Fracture Mechanics of Ceramics”, Vol 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974) p. 613.

    Google Scholar 

  68. A. J. Holland andW. E. S. Turner,Glass Technol. 24 (1940) 46T.

    Google Scholar 

  69. M. V. Swain, J. S. Williams, B. R. Lawn andJ. J. H. Beek,J. Mater. Sci. 8 (1973) 1153.

    Google Scholar 

  70. A. G. Metcalfe andG. K. Schmitz,Glass Technol. 13 (1972) 5.

    Google Scholar 

  71. T. P. Dabbs andB. R. Lawn,J. Amer. Ceram. Soc. 65 (1982) C37.

    Google Scholar 

  72. S. M. Wiederhorn, A. G. Evans andD. E. Roberts, “Fracture Mechanics of Ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, 1974) p. 829.

  73. L. R. F. Rose,Int. J. Fract. 17 (1981) 45.

    Google Scholar 

  74. W. E. Swindlehurst andT. R. Wilshaw,J. Maler. Sci. 11 (1976) 1653.

    Google Scholar 

  75. A. G. Evans andM. Linzer,J. Amer. Ceram. Soc. 56 (1973) 575.

    Google Scholar 

  76. A. G. Evans, M. Linzer andL. R. Russel,Mater. Sci. Engng 15 (1974) 253.

    Google Scholar 

  77. J. S. Nadeau,J. Amer. Ceram. Soc. 64 (1981) 585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouginot, R., Maugis, D. Fracture indentation beneath flat and spherical punches. J Mater Sci 20, 4354–4376 (1985). https://doi.org/10.1007/BF00559324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00559324

Keywords

Navigation