Skip to main content
Log in

Porosity estimation using the frequency dependence of the ultrasonic attenuation

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A new technique is reported for estimating the volume fraction of porosity in structural materials. The estimate for the volume fraction is proportional to the slope of the ultrasonic attenuation when plotted as a function of frequency. Both theory and experiment are considered. The theory, appropriate for dilute porosity, uses the uncorrelated, single-scatter approximation. An “attenuation slope” algorithm is derived within this approximation and its limits of validity are tested by computer simulation. Experimental tests consist of three parts. First, the method is compared with other existing techniques through estimates from the published data on gas porosity in aluminum casts. For the second test, cylindrical porosity is simulated by parallel through-holes drilled in aluminum blocks. Finally, the attenuation in porous graphite-epoxy samples is measured and compared with results predicted from theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Adler, J. H. Rose, and C. Mobley,J. Appl. Phys. 59:336 (1986).

    Google Scholar 

  2. J. H. Rose, D. K. Hsu, and L. Adler,J. Phys. (Paris) Colloq., Suppl. 12(46):C10 (1985); J. H. Rose, inReview of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1986), Vol. 5B, p. 1617.

  3. D. K. Hsu and K. M. Uhl, inReview of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1987), Vol. 6B, p. 1175.

    Google Scholar 

  4. J. E. Gubernatis and E. Domany, inReview of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1983), Vol. 2A, p. 833;Wave Motion 6:579 (1984).

    Google Scholar 

  5. A. G. Evans, B. R. Tittmann, L. Ahlberg, B. T. Khuri-Yakub, and G. S. Kino,J. Appl. Phys. 49:2669 (1978).

    Google Scholar 

  6. B. G. Martin,NDT Int. 9:242 (1976).

    Google Scholar 

  7. C. F. Ying and R. Truell,J. Appl. Phys. 27:1086 (1956).

    Google Scholar 

  8. T. S. Lewis, D. W. Kraft, and N. Hom,J. Appl. Phys. 47:1795 (1976).

    Google Scholar 

  9. Y. H. Pao and C. C. Mow,Diffraction of Elastic Waves and Dynamic Stress Concentrations (Crane and Russak, New York, 1973).

    Google Scholar 

  10. T. H. Tan,Appl. Sci. Res. 32:97 (1976).

    Google Scholar 

  11. J. H. M. T. van der Hijden and F. L. Neerhoff,J. Appl. Mech. 51:646 (1984).

    Google Scholar 

  12. M. O'Donnell, J. W. Mimbs, and J. G. Miller,J. Acoust. Soc. Am. 65(2):512 (1979).

    Google Scholar 

  13. D. K. Hsu and S. M. Nair, inReview of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1987), Vol. 6B, p. 1185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, S.M., Hsu, D.K. & Rose, J.H. Porosity estimation using the frequency dependence of the ultrasonic attenuation. J Nondestruct Eval 8, 13–26 (1989). https://doi.org/10.1007/BF00566584

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566584

Key words

Navigation