Skip to main content
Log in

Calculation of thermodynamic and transport properties of a typical arc furnace plasma

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Using a previously developed computer program, thermodynamic and transport properties of a typical arc furnace plasma are calculated in order to single out those species and / or reactions which exert a dominating influence on the properties of such complex mixtures. The results indicate that dissociation of molecular species in the arc furnace atmosphere has a strong effect on the specific heat and on the thermal conductivity of the mixture. The electrical conductivity is strongly affected by metallic vapors from the molten metal pool and the slag cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Dinulescu, E. Pfender, and H. Wilhelmi,Proceedings of the 5th International Symposium on Plasma Chemistry, Heriot-Watt University, Edinburgh, Scotland (1981), Vol. 1, p. 138.

    Google Scholar 

  2. W. Lyhs and H. Wilhelmi,Arch. Eisenhuetten. 53 49 (1982).

    Google Scholar 

  3. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1964).

    Google Scholar 

  4. M. Mitchner and C. H. Kruger, Jr.,Partially Ionized Gases, Wiley, New York (1973).

    Google Scholar 

  5. L. Monchick,Phys. Fluids 2 695 (1959).

    Google Scholar 

  6. E. A. Mason, R. J. Munn, and F. J. Smith,Phys. Fluids 10 1827 (1967).

    Google Scholar 

  7. F. H. Smith and R. J. Munn,J. Chem. Phys. 41 3560 (1964).

    Google Scholar 

  8. L. Monchick and E. A. Mason,J. Chem. Phys. 35 1676 (1961).

    Google Scholar 

  9. E. A. Mason,J. Chem. Phys. 27 782 (1957).

    Google Scholar 

  10. Ye. V. Samuylov and N. N. Teitelauri,High Temp. 2 509 (1964); 7, 155 (1969).

    Google Scholar 

  11. L. A. Viehland, E. A. Mason, W. F. Morrison, and M. R. Flannery,Atom. Data & Nucl. Data Tables 16 495 (1975).

    Google Scholar 

  12. J. Mostaghimi Tehrani, Ph.D. thesis, University of Minnesota, Minneapolis (1982).

    Google Scholar 

  13. I. Amdur and E. A. Mason,Phys. Fluids 1 370 (1958).

    Google Scholar 

  14. R. S. Devoto,Phys. Fluids 16 616 (1973); M. Capitelli and R. S. Devoto,J. Phys. Fluids 16, 1835 (1973).

    Google Scholar 

  15. S. O. Colgate, J. E. Jordon, I. Amdur, and E. A. Mason,J. Chem. Phys. 31 968 (1969).

    Google Scholar 

  16. L. N. Shabanova,Opt. Spectrosc. 36(1, 13 (1974).

    Google Scholar 

  17. E. A. Mason,Kinetic Processes in Gases and Plasmas, A. R. Hochstim, ed., Academic Press, New York (1969), Chapter III, p. 57.

    Google Scholar 

  18. I. Koshinar, N. A. Kryukov, and T. P. Redko,Opt. Spectrosc. 50(1), 32 (1981).

    Google Scholar 

  19. E. A. Mason,J. Chem. Phys. 23 49 (1955).

    Google Scholar 

  20. E. A. Mason, J. T. Vandershic, and J. M. Yos,Phys. Fluids 2 688 (1959).

    Google Scholar 

  21. A. Dalgarno,Phil. Trans. Roy. Soc. Lond. A250 426 (1958).

    Google Scholar 

  22. C. W. Tan, Ph.D. thesis, University of Illinois (1963).

  23. I. R. Gatland, D. R. Lamm, M. G. Thackston, W. M. Pope, F. L. Eisele, H. W. Ellis, and E. W. McDaniel,J. Chem. Phys. 69, 4951 (1978).

    Google Scholar 

  24. I. R. Gatland, M. G. Thackston, W. M. Pope, F. L. Eisele, H. W. Ellis, and E. W. McDaniel,J. Chem. Phys. 68 2775 (1978).

    Google Scholar 

  25. I. R. Gatland, L. A. Viehland, and E. A. Mason,J. Chem. Phys. 66 537 (1977).

    Google Scholar 

  26. L. S. Frost and A. V. Phelps,Phys. Rev. J. Chem. Phys. 136, A1538 (1964).

    Google Scholar 

  27. Y. Itikawa,Atom. Data Nucl. Data Tables 14 1 (1974).

    Google Scholar 

  28. H. Abdelhakim, J. P. Dinguirard, and S. Vacquie,J. Phys. D. Appl. Phys. 13 1427 (1980).

    Google Scholar 

  29. F. Harms and W. Riemann, Messung der Abgas- und Staubmengen an 70-t-Lichtbogenöfen bei teilweiser Anwendung von Sauerstoff,Stahl und Eisen,82 1345 (1962).

    Google Scholar 

  30. K. Rosenbach and W. Bruchhäuser, Erfahrungen mit der Rauchgasabsaugung und Naßreinigung durch Desintegrator an einem Lichtbogenofen,Stahl und Eisen,86 17 (1966).

    Google Scholar 

  31. P. J. Shayler and M. R. C. Fang,J. Phys. D Appl. Phys. 10 1659 (1977).

    Google Scholar 

  32. D. R. Airey, R. W. Kinsinger, P. H. Richards, and J. D. Swift, IEEE Trans. Power Appar. Syst. PAS-951 (1976).

  33. K. Jaya Ram,Z. Phys. 271 217, 1974.

    Google Scholar 

  34. D. C. Johnson and E. Pfender,Plasma Chem. Plasma Proc. 3 259 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelmi, H., Lyhs, W. & Pfender, E. Calculation of thermodynamic and transport properties of a typical arc furnace plasma. Plasma Chem Plasma Process 4, 315–323 (1984). https://doi.org/10.1007/BF00568984

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00568984

Key words

Navigation