Skip to main content
Log in

Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Mössbauer spectrum of tellurite glasses, containing 5 mol% Fe2O3 as a probe, consists of a paramagnetic quadrupole doublet with an isomer shift of 0.39 ± 0.01 mmsec−1. This indicates that Fe3+ ions are present at substitutional sites of Te4+ ions constituting distorted TeO4 trigonal bipyramids, each of which has one oxygen vacancy at an equatorial site. On increasing the K2O content from O to 35 mol%, the quadrupole splitting (Λ) for potassium tellurite glasses decreases continuously from 0.76 to 0.44 mm sec−1. On the other hand, Λ for magnesium and barium tellurite glasses increases with increasing MgO and BaO content, respectively. When the alkali or alkaline earth oxide contents are the same as each other, Λ increases in proportion to the ionic potential (Z/r) of the alkali or alkaline earth metal ion. These results suggest that the glass matrices of alkaliv and alkaline earth tellurite glasses are continuously changed into a chain and a three-dimensional network structure, respectively. Differential thermal analysis studies reveal that there exists a linear relationship between the glass transition temperatureT g and the quadrupole splitting, indicating thatT g is primarily determined by the magnitude of the distortion of TeO4 trigonal bipyramids. This relationship is also applicable to several oxide glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Stanworth,Nature 169 (1952) 581.

    Google Scholar 

  2. Idem, J. Soc. Glass Tech. 36 (1952) 217T.

    Google Scholar 

  3. J. A. James andJ. E. Stanworth,ibid. 38 (1954) 421T.

    Google Scholar 

  4. J. E. Stanworth,ibid. 38 (1954) 425T.

    Google Scholar 

  5. M. Imaoka andI. Satake,Seisankenkyu 9 (1957) 505.

    Google Scholar 

  6. G. W. Brady,J. Chem. Phys. 27 (1957) 300.

    Google Scholar 

  7. Y. Dimitriev andV. Dimitrov,Mater. Res. Bull. 13 (1978) 1071.

    Google Scholar 

  8. Y. Dimitriev, V. Dimitrov and M. Arnaudov,J. Mater. Sci. 14 (1979) 723.

    Google Scholar 

  9. N. Mochida, K. Takahashi, K. Nakata andS. Shibusawa,Yogyo Kyokai Shi 86 (1978) 26.

    Google Scholar 

  10. Y. Dimitriev, V. Dimitrov andM. Arnaudov,J. Mater. Sci. 18 (1983) 1353.

    Google Scholar 

  11. S. Neov, I. Gerassimova, K. Krezhov, B. Sydzhimov andV. Kozhukharov,Phys. Status Solidi (A) 47 (1978) 743.

    Google Scholar 

  12. H. Binczycka, O. Gzowski, L. Murawski andJ. Sawicki,ibid. 70 (1982) 51.

    Google Scholar 

  13. A. A. Bahgat, E. E. Shaisha, A. I. Sabry andN. A. Eissa,ibid. 90 (1985) K25.

    Google Scholar 

  14. A. A. Bahgat, E. E. Shaisha andA. I. Sabry,J. Mater. Sci. 22 (1987) 1323.

    Google Scholar 

  15. E. E. Shaisha, A. A. Bahgat, A. I. Sabry andN. A. Eissa,Phys. Chem. Glasses 26 (1985) 91.

    Google Scholar 

  16. T. Nishida, S. Saruwatari andY. Takashima,Bull. Chem. Soc. Jpn 61 (1988) 4093.

    Google Scholar 

  17. T. Nishida andY. Takashima,ibid. 60 (1987) 941.

    Google Scholar 

  18. T. Nishida, M. Ogata andY. Takashima,ibid. 60 (1987) 2887.

    Google Scholar 

  19. Idem, in Proceedings of 6th International Conference on the Physics of Non-Crystalline Solids, Kyoto, 1987;J. Non-Cryst. Solids 95/96 (1987) 241.

    Google Scholar 

  20. T. Nishida, S. Saruwatari andY. Takashima,Bull. Chem. Soc. Jpn 61 (1988) 2343.

    Google Scholar 

  21. T. Nishida andY. Takashima,J. Non-Cryst. Solids 94 (1987) 229.

    Google Scholar 

  22. T. Nishida, H. Ide, Y. Takashima, T. Yagi, S. Tomariguchi, T. Ishizuka andA. Sakai,J. Mater. Sci. 24 (1989) 1687.

    Google Scholar 

  23. T. Nishida, S. Saruwatari andY. Takashima,Bull. Chem. Soc. Jpn 61 (1988) 2347.

    Google Scholar 

  24. T. Nishida, H. Ide andY. Takashima,ibid. 63 (1990) 548.

    Google Scholar 

  25. J. E. Shelby,J. Amer. Ceram. Soc. 57 (1974) 436.

    Google Scholar 

  26. Idem, J. Appl. Phys. 46 (1975) 193.

    Google Scholar 

  27. T. Nishida, M. Katada andY. Takashima,Bull. Chem. Soc. Jpn 57 (1984) 3566.

    Google Scholar 

  28. N. N. Greenwood andT. C. Gibb, in “Mössbauer Spectroscopy” (Chapman and Hall, London, 1971) Chs 3 and 5.

    Google Scholar 

  29. K. H. Sun,J. Amer. Ceram. Soc. 30 (1947) 277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, T., Yamada, M., Ide, H. et al. Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses. J Mater Sci 25, 3546–3550 (1990). https://doi.org/10.1007/BF00575386

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00575386

Keywords

Navigation