Skip to main content
Log in

Electrical conduction and dielectric behaviour of the oxidic spinel Li0.5+0.5xCr0.3TixFe2.2−1.5XO4

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical conductivity of polycrystalline lithium-chromium ferrites substituted successively with Ti4+ was studied as a function of composition and temperature. The resistivity increased with composition and all the samples exhibited a change in slope in the resistivity-temperature curve. Two different regions with a large variation in activation energies were found. The dielectric constant and loss factor for different compositions were measured in the frequency range of 10kHz to 10 MHz. The dielectric permittivity showed a dispersion with frequency for all the samples. Peaks were observed for the samples with 0.4 ⩽ x ⩽ 0.8. The possible mechanisms involved are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Smit andH. P. J. Wijn, “Ferrites”, Phillips Tech. Library (Cleaver-Home, London, 1959) p. 299.

    Google Scholar 

  2. E. J. Verwey, P. W. Haayman andF. C. Romeijn,J. Chem. Phys. 15 (1947) 181.

    Google Scholar 

  3. L. G. Van Uitert,ibid. 23 (1955) 1883.

    Google Scholar 

  4. Deepika Kothari, Sumitra Phanjoubam, J. S. Baijal, Chandra Prakash andPran Kishan,J. Phys. C 21 (1988) 6169.

    Google Scholar 

  5. N. Rezlescu, D. Condurache, C. Naum andE. Luca,Rev. Roum. Phys. 18 (1973) 727.

    Google Scholar 

  6. W. Kirsten,Phys. Status Solidi (a) 28 (1975) 447.

    Google Scholar 

  7. R. Manjula, V. R. K. Murthy andJ. Sobhandari,J. Appl. Phys. 59 (1986) 2929.

    Google Scholar 

  8. S. Phanjoubam, D. Kothari andJ. S. Baijal,Phys. Status Solidi (a) 111 (1989) 131.

    Google Scholar 

  9. O. S. Josyulu andJ. Sobhandari,ibid. 59 (1980) 323.

    Google Scholar 

  10. R. Satyanarayan andS. R. Murthy,ibid. 84 (1984) 655.

    Google Scholar 

  11. C. F. Jefferson andC. K. Baker,IEEE Trans. Mag. 4 (1968) 460.

    Google Scholar 

  12. E. J. W. Verwey andJ. H. De Boer,Rec. Trav. Chim. Pays-Bas 55 (1936) 531.

    Google Scholar 

  13. J. A. Kulkarni, K. Muraleedharan, J. K. Srivastav, V. R. Marathe, V. S. Darshne, C. R. K. Murthy andR. Vijayaraghavan,J. Phys. C 18 (1985) 2593.

    Google Scholar 

  14. R. Hohne, W. Kirsten andK. Melzer,Phys. Status Solidi (a) 22 (1974) K99.

    Google Scholar 

  15. F. F. Y. Wang,Amer. Ceram. Soc. Bull. 49 (1970) 499.

    Google Scholar 

  16. T. Matsui andJ. B. Wagner Jr,J. Electrochem. Soc. 124 (1977) 1141.

    Google Scholar 

  17. C. Prakash andJ. S. Baijal,J. Less-Common Metals 114 (1985) 241.

    Google Scholar 

  18. F. Haberey andH. P. J. Wijn,Phys. Status Solidi 26 (1968) 231.

    Google Scholar 

  19. J. C. Maxwell, “Electricity and Magnetism”, Vol. 1 (Oxford University Press, Oxford, 1929) Section 328.

    Google Scholar 

  20. K. W. Wagner,Ann. Phys. 40 (1913) 817.

    Google Scholar 

  21. N. Rezlescu andE. Rezlescu,Phys. Status Solidi (a) 23 (1974) 575.

    Google Scholar 

  22. P. V. Reddy andT. S. Rao,J. Less-Common Metals 86 (1982) 255.

    Google Scholar 

  23. C. G. Koops,Phys. Rev. 83 (1951) 121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kothari, D., Phanjoubam, S. & Baijal, J.S. Electrical conduction and dielectric behaviour of the oxidic spinel Li0.5+0.5xCr0.3TixFe2.2−1.5XO4 . J Mater Sci 25, 5142–5146 (1990). https://doi.org/10.1007/BF00580142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00580142

Keywords

Navigation