Skip to main content
Log in

A theoretical evaluation of growth yields of yeasts

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Growth yields ofSaccharomyces cerevisiae andCandida utilis in carbon-limited chemostat cultures were evaluated. The yields on ethanol and acetate were much lower inS. cerevisiae, in line with earlier reports that site I phosphorylation is absent in this yeast. However, during aerobic growth on glucose both organisms had the same cell yield. This can be attributed to two factors:

  • -S. cerevisiae had a lower protein content thanC. utilis;

  • - uptake of glucose byC. utilis requires energy whereas inS. cerevisiae it occurs via facilitated diffusion. Theoretical calculations showed that, as a result of these two factors, the ATP requirement for biomass formation inC. utilis is 35% higher than inS. cerevisiae (theoretical YATP values of 20.8 and 28.1, respectively). The experimental YATP for anaerobic growth ofS. cerevisiae on glucose was 16 g biomass·mol ATP-1

In vivo P/O-ratios can be calculated for aerobic growth on ethanol and acetate, provided that the gap between the theoretical and experimental ATP requirements as observed for growth on glucose is taken into account. This was done in two ways:

  • - via the assumption that the gap is independent of the growth substrate (i.e. afixed amount of ATP bridges the difference between the theoretical and experimental values).

  • - alternatively, on the assumption that the difference is a fraction of the total ATP expenditure, that is dependent on the substrate.

Calculations of P/O-ratios for growth of both yeasts on glucose, ethanol, and acetate made clear that only by assuming a fixed difference between theoretical and experimental ATP requirements, the P/O-ratios are more or less independent of the growth substrate. These P/O-ratios are approximately 30% lower than the calculated mechanistic values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiking H, Sterkenburg A & Tempest DW (1977) Influence of specific growth limitation and dilution rate on the phosphorylation efficiency and cytochrome content of mitochondria ofCandida utilis NCYC 321. Arch. Microbiol. 113: 65–72.

    Google Scholar 

  • Babel W & Müller RH (1985) Correlation between cell composition and carbon conversion efficiency in microbial growth: a theoretical study. App. Microbiol. Biotechnol. 22: 201–207

    Google Scholar 

  • Barford JP & Hall RJ (1979) An examination of the Crabtree effect inSaccharomyces cerevisiae: the role of respiratory adaptation. J. Gen. Microbiol. 114: 267–275

    Google Scholar 

  • Baronofsky JJ, Schreurs WJA & Kashket ER (1984) Uncoupling by acetic acid limits growth of and acetogenesis byClostridium thermoaceticum. Appl. Environ. Microbiol., 48: 1134–1139

    Google Scholar 

  • Bauchop T & Elsden SR (1960) The growth of micro-organisms in relation to their energy supply. J. Gen. Microbiol. 23: 457–469

    Google Scholar 

  • Beavis AD (1987a) Upper and lower limits of the charge translocation stoichiometry of mitochondrial electron transport. J. Biol. Chem. 262: 6165–6173

    Google Scholar 

  • — (1987b) Upper and lower limits of the charge translocation stoichiometry of cytochromec oxidase. J. Biol. Chem. 262: 6174–6181

    Google Scholar 

  • Beudeker RF, vanDam HW, van derPlaat JB & Vellenga K (1990) Developments in baker's yeast production. In: Verachtert H & DeMot R (Eds) Yeast Biotechnology and Biocatalysis (pp 103–145). Marcel Dekker Inc., New York & Basel

    Google Scholar 

  • Branden CI, Jornvall H, Eklund H & Furugren B (1975) Alcohol dehydrogenases. In: Boyer PD (Ed) The Enzymes, Vol XI A (pp 103–190) Academic Press, New York

    Google Scholar 

  • Brown CM & Rose AH (1969) Effects of temperature on composition and cell volume ofCandida utilis. J. Bacteriol. 97: 261–272

    Google Scholar 

  • Brown GC & Brand MD (1988) Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio. Biochem. J. 252: 473–479.

    Google Scholar 

  • Bruinenberg PM, vanDijken JP & Scheffers WA (1983) An enzymic analysis of NADPH production and consumption inCandida utilis. J. Gen. Microbiol. 129: 965–971

    Google Scholar 

  • Dijkhuizen L, Wiersma M & Harder W (1977) Energy production and growth ofPseudomonas oxalaticus OX1 on oxalate and formate. Arch. Microbiol. 115: 229–236

    Google Scholar 

  • Eddy AA & Hopkins PG (1985) The putative electrogenic nitrate-protonsymport of the yeastCandida utilis. Comparison with the systems absorbing glucose or lactate. Biochem. J. 231: 291–297

    Google Scholar 

  • Evans CT, Scragg AH & Ratledge C (1983) A comparative study of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts. Eur. J. Biochem. 130: 195–204

    Google Scholar 

  • Fiechter A & vonMeyenburg HK (1969) Regulatory properties of growing cell populations ofSaccharomyces cerevisiae in a continuous culture system. In: Kocková-Kratochvílová A (Ed) Yeasts. The proceedings of the 2nd Symposium on Yeasts (pp 387–398). Slovenskej Akademie Vied, Bratislava

    Google Scholar 

  • Fraenkel DG (1982) Carbohydrate metabolism. In: Strathern JN, Jones EW & Broach JR (Eds) The Molecular Biology of the YeastSaccharomyces, Metabolism and Gene Expression (pp 1–37). Cold Spring Harbor, New York

  • Frankena J, vanVerseveld HW & Stouthamer AH (1985) A continuous culture study of the bioenergetic aspects of growth and production of exocellular protease inBacillus licheniformis. Appl. Microbiol. Biotechol. 22: 169–176

    Google Scholar 

  • Furukawa K, Heinzle E & Dunn IJ (1983) Influence of oxygen on the growth ofSaccharomyces cerevisiae in continuous culture. Biotechnol. Bioeng. 25: 2293–2317

    Google Scholar 

  • Gommers PJF, vanSchie BJ, vanDijken JP & Kuenen JG (1988) Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization. Biotechnol. Bioeng. 32: 86–94

    Google Scholar 

  • Gottschalk G & Andreesen JR (1979) Energy metabolism in anaerobes. In: Quayle JR (Ed) Microbial Biochemistry 21 (pp 85–115). University Park Press, Baltimore

    Google Scholar 

  • Gunter TE & Jensen BD (1986) The efficiencies of the component steps of oxidative phosphorylation. Arch. Biochem. Biophys. 248: 289–304

    Google Scholar 

  • Harder W & vanDijken (1976) Theoretical considerations on the relation between energy production and growth of methane-utilizing bacteria. In: Schlegel HG, Gottschalk G & Pfennig N (Eds) Microbial Production and Utilization of Gases (H2, CH4, CO) (pp 403–418). E Goltze KG, Göttingen

    Google Scholar 

  • Harder W, vanDijken JP & Roels JA (1981) Utilization of energy in methylotrophs. In: Dalton H (Ed) Microbial Growth on C1 Compounds (pp 258–269). Heyden, London

    Google Scholar 

  • Haukelie AD & Lie S (1971) Molar growth yields of yeasts in anaerobic batch cultures. J. Gen. Microbiol. 69: 135–141

    Google Scholar 

  • Jacobson MK & Bernofsky C (1974) Mitochondrial acetaldehyde dehydrogenase fromSaccharomyces cerevisiae. Biochim. Biophys. Acta 350: 277–291

    Google Scholar 

  • Kashket ER (1982) Stoichiometry of the H+-ATPase of growing and resting aerobicEscherichia coli. Biochemistry, 21: 5534–5538

    Google Scholar 

  • Klein HP & Jahnke L (1971) Variations in the localization of acetyl-coenzyme. A synthetase in aerobic yeast cells. J. Bacteriol. 106: 596–602

    Google Scholar 

  • Kormančíková V, Kováč L & Vidová M (1969) Oxidative phosphorylation in yeast. V. Phosphorylation efficiencies in growing cells determined from molar growth yields. Biochim. Biophys. Acta 180: 9–17

    Google Scholar 

  • Lagunas R (1976) Energy metabolism ofSaccharomyces cerevisiae: discrepancy between ATP balance and known metabolic functions. Biochim. Biophys. Acta 440: 661–674

    Google Scholar 

  • Lagunas R & Ruiz E (1988) Balance of production and consumption of ATP in ammonium-starvedSaccharomyces cerevisiae. J. Gen. Microbiol. 134: 2507–2511

    Google Scholar 

  • Lang JM & Cirillo VP (1987) Glucose transport in a kinaselessSaccharomyces cerevisiae mutant. J. Bacteriol. 169: 2932–2937

    Google Scholar 

  • Lewin B (1985) The ribosome translation factory. In: Genes II (pp 150). J Wiley & Sons, New York, Chichester, Brisbane, Toronto & Singapore

    Google Scholar 

  • Light PA & Garland PB (1971) A comparison of mitochondria fromTorulopsis utilis grown in continuous culture with glycerol, iron, ammonium, magnesium or phosphate as the growth-limiting nutrient. Biochem. J. 124: 123–134

    Google Scholar 

  • Llorente N & Núñez de Castro I (1977) Physiological role of yeasts NAD(P)+ and NADP+-linked aldehyde dehydrogenases. Rev. Esp. Fisiol. 33: 135–142

    Google Scholar 

  • Malpartida F & Serrano R (1981) Proton translocation catalyzed by the purified yeast plasma membrane ATPase reconstituted in liposomes. FEBS Lett. 131: 351–354

    Google Scholar 

  • Mitchell R, West IC, Moody AJ & Mitchell P (1986) Measurement of the proton-motive stoichiometry of the respiratory chain of rat liver mitochondria: the effect ofN-ethylmaleimide. Biochim. Biophys. Acta 849: 229–235

    Google Scholar 

  • Møller IM & Palmer JM (1981) Properties of the oxidation of exogenous NADH and NADPH by plant mitochondria. Evidence against a phosphatase or a nicotinamide nucleotide transhydrogenase being responsible for NADPH oxidation. Biochim. Biophys. Acta 638: 225–233

    Google Scholar 

  • Murphy MP & Brand MD (1988) Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. Eur. J. Biochem. 173: 637–644

    Google Scholar 

  • Nelson N & Taiz L (1989) The evolution of H+-ATPases TIBS 14: 113–116

    Google Scholar 

  • Ohnishi T (1973) Mechanism of electron transport and energy conservation in the site I region of the respiratory chain. Biochim. Biophys. Acta 301: 105–128

    Google Scholar 

  • Otto R, Sonnenberg ASM, Veldkamp H & Konings WN (1980) Generation of an electrochemical proton gradient inStreptococcus cremoris by lactate efflux. Proc. Natl. Acad. Sci. USA 77: 5502–5506

    Google Scholar 

  • Ouhabi R, Rigoulet M & Guerin B (1989) Flux-yield dependence of oxidative phosphorylation at constant ΔμH+. FEBS Lett. 254: 199–202

    Google Scholar 

  • Oura E (1972) The effect of aeration on the growth energetics and biochemical composition of baker's yeast. Ph.D.thesis, University of Helsinki, Finland

  • Peinado JM, Cameira-Dos-Santos PJ & Loureiro-Días MC (1989) Regulation of glucose transport inCandida utilis. J. Gen. Microbiol. 135: 195–201

    Google Scholar 

  • Perlin DS, San Francisco MJD, Slayman CW & Rosen BP (1986) H+/ATP stoichiometry of proton pumps fromNeurospora crassa andEscherichia coli. Arch. Biochem. Biophys. 248: 53–61

    Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. London B 163: 224–231

    Google Scholar 

  • Postma E, Scheffers WA & vanDijken JP (1988) Adaptation of the kinetics of glucose transport to environmental conditions in the yeastCandida utilis CBS 621: a continuous-culture study. J. Gen. Microbiol. 134: 1109–1116

    Google Scholar 

  • Postma E, Verduyn C, Scheffers WA & vanDijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures ofSaccharomyces cerevisiae. Appl. Environ. Microbiol. 55: 468–477

    Google Scholar 

  • Rieger M, Käppeli O & Fiechter A (1983) The role of limited respiration in the incomplete oxidation of glucose bySaccharomyces cerevisiae. J. Gen. Microbiol. 129: 653–661

    Google Scholar 

  • Roels JA (1983) Biochemically structured balances of microbial metabolism. In: Energetics and Kinetics in Biotechnology (pp 99–128). Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Romano AH (1982) Facilitated diffusion of 6-deoxy-D-glucose in bakers' yeast: evidence against phosphorylation-associated transport of glucose. J. Bacteriol. 152: 1295–1297

    Google Scholar 

  • Satyanarayana T & Klein HP (1976) Studies on the ‘aerobic’ acetyl CoA-synthetase ofSaccharomyces cerevisiae: purification, crystallization, and physical properties of the enzyme. Arch. Biochem. Biophys. 174: 480–490

    Google Scholar 

  • Schatzmann H (1975) Anaerobes Wachstum von Saccharomyces cerevisiae. Ph.D.thesis Eidgenössische Technische Hochschule Zürich, Switzerland

  • Schuurmans Stekhoven FMAH (1966) Studies on yeast mitochondria. I. Existence of three phosphorylation sites along the respiratory chain of isolated yeast mitochondria. Arch. Biochem. Biophys. 115: 555–568

    Google Scholar 

  • Schwarz RD & Keller FA (1982) Acetic acid production byClostridium thermoaceticum in pH-controlled batch fermentations at acidic pH. Appl. Env. Microbiol. 43: 1385–1392

    Google Scholar 

  • Shul'govskaya EM, Pozmogova IN & Rabotnova IL (1988) Growth of a culture ofCandida utilis in the chemostat on a balanced medium. Microbiology 56: 496–499

    Google Scholar 

  • Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39: 545–565

    Google Scholar 

  • Stouthamer AH & Bettenhaussen CW (1975) Determination of the efficiency of oxidative phosphorylation in continuous cultures ofAerobacter aerogenes. Arch. Microbiol. 102: 187–192

    Google Scholar 

  • Stouthamer AH (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR (Ed) International Review of Biochemistry. Microbial Biochemistry Vol 21 (pp 1–46). University Park Press, Baltimore

    Google Scholar 

  • Stouthamer AH, Bulthuis BA & vanVerseveld HW (1990) Energetics of growth at low growth rates and its relevance for the maintenance concept. In: Bazin MJ & Poole RK (Eds) Microbial Growth Dynamics (pp 85–102). Oxford University Press, Oxford

    Google Scholar 

  • Stucki JW (1980) The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur. J. Biochem. 109: 269–283

    Google Scholar 

  • Taiz L (1986) Are biosynthetic reactions in plant cells thermodynamically coupled to glycolysis and the tonoplast proton motive force? J. Theor. Biol. 123: 231–238

    Google Scholar 

  • Tempest DW & Neijssel OM (1984) The status of YATP and maintenance energy as biologically interpretable phenomena. Annual Rev. Microbiol. 38: 459–486

    Google Scholar 

  • Thompson RC (1988) EFTu provides an internal kinetic standard for translational accuracy. TIBS 13: 91–93

    Google Scholar 

  • Tuttle JH & Dugan PR (1976) Inhibition of growth, iron, and sulfur oxidation inThiobacillus ferrooxidans by simple organic compounds. Can. J. Microbiol. 22: 719–730

    Google Scholar 

  • VanDijken JP & Harder W (1975) Growth yields of microorganisms on methanol and methane. A theoretical study. Biotechnol. Bioeng. 17: 15–30

    Google Scholar 

  • VanDijken JP & Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32: 199–224

    Google Scholar 

  • VanGent-Ruijters MLW, deVries W & Stouthamer AH (1975) Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b inPropionibacterium pentosaceum. J. Gen. Microbiol. 88: 36–48

    Google Scholar 

  • VanUrk H, Mak PR, Scheffers WA & vanDijken JP (1988) Metabolic responses ofSaccharomyces cerevisiae CBS 8066 andCandida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4: 283–291

    Google Scholar 

  • VanUrk H, Bruinenberg PM, Veenhuis M, Scheffers WA & vanDijken JP (1989) Respiratory capacities of mitochondria ofSaccharomyces cerevisiae CBS 8066 andCandida utilisCBS 621 grown under glucose limitation. Antonie van Leeuwenhoek 56: 211–220

    Google Scholar 

  • Verduyn C, vanDijken JP & Scheffers WA (1984) Colorimetric alcohol assays with alcohol oxidase. J. Microbiol. Meth. 2: 15–25

    Google Scholar 

  • Verduyn C, Postma E, Scheffers WA & vanDijken JP (1990a) Physiology ofSaccharomyces cerevisiae in anaerobic glucoselimited chemostat cultures. J. Gen. Microbiol. 136: 395–403

    Google Scholar 

  • —, (1990b) Energetics ofSaccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136: 405–412

    Google Scholar 

  • VonJagow G & Klingenberg M (1970) Pathways of hydrogen in mitochondria ofSaccharomyces carlbergensis. Eur. J. Biochem. 12: 583–592

    Google Scholar 

  • VonMeyenburg HK (1969) Energetics of the budding cycle ofSaccharomyces cerevisiae during glucose limited aerobic growth. Arch. Mikrobiol. 66: 289–303

    Google Scholar 

  • Wikström M (1984) Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett. 169: 300–304

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verduyn, C., Stouthamer, A.H., Scheffers, W.A. et al. A theoretical evaluation of growth yields of yeasts. Antonie van Leeuwenhoek 59, 49–63 (1991). https://doi.org/10.1007/BF00582119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582119

Key words

Navigation