Skip to main content
Log in

Electrical resistivity changes due to interstitial hydrogen in palladium-rich substitutional alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The changes in electrical resistivity of palladium solid solution alloys (alloying element = silver, gold, copper, yttrium, cerium, titanium, zirconium, vanadium, niobium and tantalum) with hydrogen concentration were measured at 301 K up to aboutr(H/M) = 1.5×10−2; the hydrogen was introduced by electrolysis and measurements of electrode potential were also made. The specific electrical resistivity increment per unit change of hydrogen concentration, ∂Δϱ1∂r, generally increases with increase of the solute contents, although for silver, gold and copper there are no notable changes in the slopes with their concentrations. The increase in ∂Δ/g9/∂r with the alloying contents cannot be related to the lattice “dilatation” effect due to the solute, but it is associated approximately with a decrease in the density-of-states at the Fermi level caused by pre-filling of the 4 d band of palladium by the solute atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Lewis, “The Palladium-Hydrogen Systems” (Academic Press, New York, 1967).

    Google Scholar 

  2. T. B. Flanagan andF. A. Lewis,Trans. Faraday Soc. 55 (1959) 1400.

    Google Scholar 

  3. J. C. Barton, F. A. Lewis andI. Woodward,ibid. 59 (1963) 1201.

    Google Scholar 

  4. A. W. Carson, T. B. Flanagan andF. A. Lewis,ibid. 56 (1960) 363.

    Google Scholar 

  5. B. Baranowski, F. A. Lewis, W. D. McFall, S. Filipek andT. C. Witherspoon,Proc. Roy. Soc. London A386 (1983) 309.

    Google Scholar 

  6. J. C. Barton, J. A. S. Green andF. A. Lewis,Trans. Faraday Soc. 62 (1966) 960.

    Google Scholar 

  7. M. Laprade, K. D. Allard, J. F. Lynch andT. B. Flanagan,J. Chem. Soc. Faraday Trans. I 70 (1974) 1615.

    Google Scholar 

  8. D. Artman, J. F. Lynch andT. B. Flanagan,J. Less-Common Metals 45 (1976) 215.

    Google Scholar 

  9. K. Kandasamy, F. A. Lewis, W. D. Mcfall andR. A. Mcnicholl,Z. Phys. Chem. N.F.,163 (1989) 41.

    Google Scholar 

  10. D. A. Smith andI. R. Harris,Ibid. 147 (1986) 1.

    Google Scholar 

  11. A. W. Carson, F. A. Lewis andW. H. Schurter,Trans. Faraday Soc. 63 (1967) 1447.

    Google Scholar 

  12. A. Maeland, PhD thesis, University of Vermont (1964).

  13. K. D. Allard, J. F. Lynch andT. B. Flanagan,Z. Phys. Chem. N.F. 93 (1974) 15.

    Google Scholar 

  14. D. Fisher, D. M. Chisdes andT. B. Flanagan,J. Solid Stale Chem. 20 (1977) 149.

    Google Scholar 

  15. R. Burch andR. G. Buss,J. Chem. Soc. Faraday Trans. I 71 (1975) 913.

    Google Scholar 

  16. H. Brodowsky andE. Poeschel,Z. Phys. Chem. N.F. 44 (1965) 143.

    Google Scholar 

  17. R. Burch andR. G. Buss,J. Chem. Soc. Faraday Trans. I 71 (1975) 922.

    Google Scholar 

  18. R. Burch AndN. B. Mason,ibid. 76 (1980) 2285.

    Google Scholar 

  19. J. D. Clewley, J. F. Lynch andT. B. Flanagan,ibid. 73 (1977) 494.

    Google Scholar 

  20. Y. Sakamoto, K. Kajihara, Y. Fukusaki andT. B. Flanagan,Z. Phys. Chem. N.F. 159 (1988) 61.

    Google Scholar 

  21. Y. Sakamoto, T. Matsuo, H. Sakai andT. B. Flanagan,ibid. 162 (1989) 83.

    Google Scholar 

  22. N. F. Mott andH. Jones,“The Theory of Metals and Alloys” (Oxford University Press, 1935).

  23. N. Kuwano, T. Shiwaku, Y. Tomokiyo andT. Eguchi,Jpn. J. Appl. Phys. 20 (1981) 1603.

    Google Scholar 

  24. D. A. Smith, I. P. Jones andI. R. Harris,J. Mater. Sci. Lett. 1 (1982) 463.

    Google Scholar 

  25. Y. Sakamoto, T. B. Flanagan andT. Kuji,Z. Phys. Chem. N.F. 143 (1985) 61.

    Google Scholar 

  26. Y. Sakamoto, M. Yoshida AndT. B. Flanagan,J. Mater. Res. 1 (1986) 781.

    Google Scholar 

  27. K. Baba, Y. Sakamoto AndT. B. Flanagan,J. Chem. Soc. Faraday Trans. I 84 (1988) 459.

    Google Scholar 

  28. Y. Sakamoto, K. Kajihara, T. Kikumura andT. B. Flanagan,J. Chem. Soc. Faraday Trans. 86 (1990) 377.

    Google Scholar 

  29. B. Svensson,Ann. Phys. 14 (1932) 699.

    Google Scholar 

  30. E. Kudielka-Artner andB. B. Argent,Proc. Phys. Soc. 80 (1962) 1143.

    Google Scholar 

  31. Japan Institute of Metals (eds), “Metals Data Hand Book”, (Maruzen, Tokyo, 1974).

    Google Scholar 

  32. Y. Sakamoto, K. Yuwasa andK. Hirayama,J. Less-Common Metals 88 (1982) 115.

    Google Scholar 

  33. Y. Sakamoto, H. Kaneko, T. Tsukahara andS. Hirata,Scripta Metall. 21 (1987) 415.

    Google Scholar 

  34. Y. Sakamoto, K. Baba andT. B. Flanagan,Z. Phys. Chem. N.F. 158 (1988) 223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, K., Miyagawa, U., Watanabe, K. et al. Electrical resistivity changes due to interstitial hydrogen in palladium-rich substitutional alloys. J Mater Sci 25, 3910–3916 (1990). https://doi.org/10.1007/BF00582459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582459

Keywords

Navigation