Skip to main content
Log in

Optical spectroscopy for the early diagnosis of gastrointestinal malignancy

  • Review
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The early diagnosis of gastrointestinal malignancy will allow eradication of the disease prior to invasive cancer. At present, fluorescence spectroscopy offers the most realistic prospect of an early clinical system and is currently under evaluation. Optical coherence tomography can differentiate the layers of the oesophageal wall and has greater reolution than ultrasound. Although complicated, Raman spectroscopy offers the greatest information with possible development of a molecular endoscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hameeteman W, Tytgat GNJ, Houthoff HJ, Van Den Tweel JG. Barrett's esophagus: development of dysplasia and carcinoma. Gastroenterology 1989; 96:1249–56

    Google Scholar 

  2. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA 1991; 265:1287–9

    Google Scholar 

  3. Levine DS, Haggitt RC, Blount PL, Rabinovitch PS, Rusch VW, Reid BJ. An endoscopic biopsy protocol can differentiate high-grade dysplasia from early adenocarcinoma in Barrett's esophagus. Gastroenterology 1993; 105:40–50

    Google Scholar 

  4. Barr H, Shepherd NA, Dix A, Roberts DJH, Tan WC, Krasner N. Eradication of high-grade dysplasia in columnar-lined (Barrett's) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX. Lancet 1996; 348:584–5

    Google Scholar 

  5. Berenson MM, Johnson TD, Markowitz NR, Buchl KN, Samowitz WS. Restoration of squamous mucosa after ablation of Barrett's esophageal epithelium. Gastroenterology 1993; 104:1686–91

    Google Scholar 

  6. Regula J, MacRobert AJ, Gorchein A et al. Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5-aminolaevulinic acid induced protoporphyrin IX — a pilot study. Gut 1995; 36:67–75

    Google Scholar 

  7. Overholt BF, Panjehpour M. Barrett's esophagus: photodynamic for ablation of dysplasia, reduction of specialized mucosa, and treatment of superficial esophageal cancer. Gastrointest Endosc 1995; 42:64–9

    Google Scholar 

  8. Pitt GD. A revolution in Raman spectroscopy. Physics Business, 1997:6–7

  9. Bohorfoush AG. Tissue spectroscopy for gastrointestinal diseases. Endoscopy 1996; 28:372–80

    Google Scholar 

  10. Panjepour M, Overholt BF, Vo-Dinh T et al. Endoscopic fluorescence detection of high-grade dysplasia in Barrett's esophagus. Gastroenterology 1996; 111:93–101

    Google Scholar 

  11. Jacques SL. Mechanisms and limits of contrast in optical imaging of cancer, SPIE Proceedings of Conference on Advances in Lasers and Light Spectroscopy to Diagnose Cancer and Other Diseases II 1995; 2387:88–94

    Google Scholar 

  12. Vo-Dinh T, Panjehpour M, Overholt BF, Farris C, Buckley III FB, Sneed R. In vivo cancer diagnosis of the esophagus using differential normalised fluorescence (DNF) indices. Lasers Surg Med 1995; 16:41–7

    Google Scholar 

  13. Savage HE, Kolli V, Ansley J, Chandawarker RY, Alfano RR, Schantz SP. Innate tissue fluorescence of the oral mucosa of controls. SPIE Proceedings of Conference on Advances in Lasers and Light Spectroscopy to Diagnose Cancer and Other Diseases II, 1995; 2387:2–14.

    Google Scholar 

  14. Svanberg K, Andersson-Engels S, Baert L et al. Tissue characterisation in some clinical specialities utilising laser-induced fluorescence. SPIE Proceedings of the Conference on Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, 1994; 2135:2–15

    Google Scholar 

  15. Irani K, Xia Y, Zweier JL et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997; 275:1649–52

    Google Scholar 

  16. Stael von Holstein C, Nilsson AMK, Andersson-Engels S, Wllen R, Walther B, Svanberg K. Detection of adenocarcinoma in Barrett's oesophagus by means of laser induced fluorescence. Gut 1996; 39:711–6

    Google Scholar 

  17. Loh CS, Vernon D, MacRobert AJ, Bedwell J, Bown SG, Brown SB. Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract. J Photochem Photobiol B 1993; 20:47–54

    Google Scholar 

  18. Regula J, MacRobert AJ, Gorchein A et al. Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5-aminolaevulinic acid induced protoporphyrin IX — a pilot study. Gut 1995; 36:67–75

    Google Scholar 

  19. Folli S, Westermann P, Braichotte D et al. Antibodyindocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res 1994; 54:2643–9

    Google Scholar 

  20. Tata DB, Foresti M, Cordero J, Tomashefsky P, Alfano MA, Alfano RR. Fluorescence polarisation spectroscopy and time-resolved fluorescence kietics of native cancerous and normal rat kidney tissues. Biophys J 1986; 50:463–9

    Google Scholar 

  21. Andersson-Engels S, Berg R, Persson A, Svanberg S. Multispectral tissue characterisation with time resolved detection of diffusely scattered white light. Optics Lett 1993; 18:1697–9

    Google Scholar 

  22. Glanzmann T, Ballini J, Jichlinski P, van den Bergh H, Wagnieres G. Tissue characterisation by time-resolved spectroscopy of endogenous and exogenous fluorochromes: apparatus design and preliminary results. SPIE Proceedings on the Conference on Optical Biopsies and Microscopic techniques 1996; 2926:41–50

    Google Scholar 

  23. Cubeddu R, Canti G, Taroni P, Valentini G. Time-gated fluorescence spectroscopy and imaging of porphyrins and phthalocyanines. SPIE Proceedings of the Conference on Future Trends in Biomedical Applications of Lasers 1991; 1525:17–25

    Google Scholar 

  24. Andersson-Engels S, Wilson BC. In vivo fluorescence in clinical oncology: fundamental and practical issue. J Cell Pharmacol 1992; 3:66–79

    Google Scholar 

  25. Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M. Fluorescence lifetime imaging. Anal Biochem 1992; 202:316–30

    Google Scholar 

  26. Andersson-Engels S, Ankerst S, Johansson J et al. Tumour marking properties of different hematoporphyrins and tetrasulphonated phthalocyanine — a comparison. Lasers Med Sci 1989; 4:115–23

    Google Scholar 

  27. Andersson-Engels S, Johansson J, Stenram U, Svanberg K, Svanberg S. Malignant tumour and atherosclerotic plaque diagnosis using laser-induced fluorescence. IEEE J Quantum Elect 1990; 26:2207–17

    Google Scholar 

  28. Qu J, MacAulay C, Lam S, Palcic B. Mechanisms of ratio fluorescence imaging of diseased tissue. SPIE 2387:71–9

  29. Proflio AE, Balchum OJ, Carstens F. Digital background subtraction for fluorescence imaging. Med Phys 1989; 5:717–21

    Google Scholar 

  30. Wagnieres G, Depeursinge Ch, Monnier Ph et al. Photodetection of early cancer by laser induced fluorescence of a tumour-selective dye: apparatus design and realization. Photodyn Ther Mechanisms II. SPIE:1203, 1990

  31. Andersson PS, Montan S, Svanberg S. Multispectral system for medical fluorescence imaging. IEEE J Quantum Elec 1987; 23:1798–805

    Google Scholar 

  32. Schomacker KT, Flotte TJ, Deutsch TF. Detection of chemically induced dysplasia in rat urinary bladder with laser-induced fluorescence. SPIE 1994; 2135:76–9

    Google Scholar 

  33. Andersson PS, Kjellen E, Montan S, Svanberg K, Svanberg S. Autofluorescence of various rodent tissues and human skin tumour samples. Lasers Med Sci 1987; 2:41–9

    Google Scholar 

  34. Andersson-Engels S, Elner A, Johansson J et al. Clinical recording of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities. Lasers Med Sci 1989; 6:415–24

    Google Scholar 

  35. Van Dam J, Bjorkman DJ. Shedding some light on high-grade dysplasia. Gastroenterology 1996;111:227–49

    Google Scholar 

  36. Stael von Holstein C, Nilsson AMK, Andersson-Engels S, Willen R, Walther B, Svanberg K. Detection of adenocarcinoma in Barrett's oesophagus by means of laser induced fluorescence. Gut 1996; 39:711–6

    Google Scholar 

  37. Dets SM, Buryi AN, Melnik IS, Joffe AY, Rusina TV. Laser-induced fluorescence detection of stomach cancer using hypercin. SPIE Optical Biopsies Microscopic Techniques 1996; 2926:51–6

    Google Scholar 

  38. Kapadia C, Cutruzzola F, Obrian K, Stetz M, Enriquez R, Deckelbaum L. Laser induced fluorescence spectroscopy on human colonic mucosa. Gastroenterology 1990; 99:150–7

    Google Scholar 

  39. Cothren RM, Richards-Kortum R, Sivak M et al. Gastrointestinal tissue diagnostics by laser-induced fluorescence spectroscopy at endoscopy. Gastrointest Endosc 1990; 36:105–11

    Google Scholar 

  40. Schomacker K, Frisoli J, Compton C et al. Ultraviolet laser induced fluorescence of colonic tissue. Laser Surg Med 1992; 12:63–78

    Google Scholar 

  41. Zeng H, Weiss A, MacKinnon N, Cline R, MacAulay C. In vivo fluorescence spectroscopy of the gastrointestinal tract under multiple wavelength excitation. SPIE, Optical Biopsies Microsc Techniques 1996; 2926:4–8

    Google Scholar 

  42. Wang TD, Van Dam J, Crawford JM, Preisinger EA, Wang Y, Feld MS. Fluorescence endoscopic imaging of human colonic adenomas. Gastroenterology 1996; 111:1182–91

    Google Scholar 

  43. Manoury V, Mordon S, Klein O, Colombel J-F Fluorescence endoscopic imaging study of anastomotic recurrence of Crohn's disease. Gastrointest Endosc 1996; 43:603–4

    Google Scholar 

  44. Mourant JR, Bigio IJ, Boyer J, Conn RL, Johnson T, Shimada T. Spectroscopic diagnosis of bladder cancer with elastic light scatering. Lasers Med Surg 1995; 17:350–7

    Google Scholar 

  45. Mourant JR, Boyer JD, Johnson TM et al. Detection of gastrointestinal cancer by elastic light scattering and absorption spectroscopies with the Los Alamos Optical Biopsy System. SPIE Proceedings of Conference on Advances in Lasers and Light Spectroscopy to Diagnose Cancer and Other Diseases II 1995; 2387:210–7

    Google Scholar 

  46. Fujimoto JG, Brezinski ME, Tearney GJ et al. Optical biopsy and imaging using optical coherence tomography. Nature Med 1995; 1:970–2

    Google Scholar 

  47. Bouma BE, Tearney GJ, Boppart SA, Hee MR, Brezinski MB, Fujimoto JG. High resolution optical coherence tomographic imaging using a modelocked TiAl203 laser source. Optics Lett 1995; 20:1486–8

    Google Scholar 

  48. Brezinski ME, Tearney GJ, Bouma BE et al. Optical coherence tomography for optical biopsy properties and demonstration of vascular pathology. Circulation 1996; 93:1206–13

    Google Scholar 

  49. Izatt JA, Wang H-W, Kulkarni M, Kobayashi K, Canto MI, Sivak MV. Optical coherence tomography and microscopy in gastrointestinal tissues. Advances in Optical Imaging and Photon Migration, Technical Digest, Washington, DC: Optical Society of America, 1996:24–6

    Google Scholar 

  50. Szymanski HA. Raman Spectroscopy Theory and Practice, 1st edn. New York: Plenum Press, 1967

    Google Scholar 

  51. Manoharan R, Wang Y, Dasari RR, Singer SS, Rava RP, Feld MS. Ultraviolet resonance Raman spectroscopy for detection of colon cancer. Lasers Life Sci 1995; 6:217–27

    Google Scholar 

  52. Banwell CN. Fundamentals of Molecular Spectroscopy, 2nd edn. London: McGraw Hill, 1972:121

    Google Scholar 

  53. Carey PR. Biochemical Applications of Raman and Resonance Raman Spectroscopies, 1st edn. London: Academic Press, 1982:6–47

    Google Scholar 

  54. Mahadevan-Jansen A, Richards-Kortum R. Raman spectroscopy for the detection of cancers and precancers. J Biomed Optics 1996; 1:31–70

    Google Scholar 

  55. Yu NT, East EJ. Laser Raman spectroscopic studies of ocular lens and its isolated protein fractions. J Biol Chem 1975; 250:2196–202

    Google Scholar 

  56. Wang SY, Hasty CE, Watson PA, Wicksted JP, Stith RD, March WF. Analysis of metabolites in aqueous solutions by using laser Raman spectroscopy. Appl Opt 1993; 32:925–9

    Google Scholar 

  57. Manaharan R, Wang Y, Feld MS. Histochemical analysis of biological tissues using Raman spectroscopy. Spectrochim Acta Part A 1996; 52:215–49

    Google Scholar 

  58. Alfano RR, Liu CH, Sha WL et al. Human breast tissues studied by IR Fourier transform Raman spectroscopy. Lasers Life Sci 1991; 4:23–8

    Google Scholar 

  59. Barag JJ, Feld MS, Rava RP. Rapid near-infrared Raman spectroscopy of human tissue with a spectrograph and CCD detector. Appl Spect 1992; 46:187–90

    Google Scholar 

  60. Manoharan R, Wang Y, Boustany N et al. Raman spectroscopy for cancer detection: instrument development and tissue diagnosis. SPIE Proceedings of the Conference on Biomedical Optoelectronic Devices and Systems I 1994; 2328:129

    Google Scholar 

  61. Mahadevan A, Ramanujam N, Mitchell MF, Malpica A, Thomsen S, Richards-Kortum R. Optical techniques for the diagnosis of cervical precancers: a comparison of Raman and fluorescence spectroscopies. SPIE Proceedings of the Conference on Advances in Fluorescence Sensing Technology II 1995; 2388:110

    Google Scholar 

  62. Schader B, Keller S, Lochte T et al. NIR FT Raman spectroscopy in medical diagnosis. J Mol Struct 1995; 348:293–6

    Google Scholar 

  63. Feld MS, Manoharan R, Salenius J et al. Detection and characterisation of human tissue lesions with near infrared Raman spectroscopy. SPIE Proceedings of the Conference on Advances in Fluorescence Sensing Technology II 1995; 2388:110

    Google Scholar 

  64. Redd DCB, Frank CJ, Feng ZC, Gansler TS, McCreery RL. Raman spectroscopic characterisation of human malignant tissues: implications for a percutaneous optical biopsy technique for in-situ tissue diagnosis. SPIE Proceedings of the Conference on Optical Biopsy 1993; 2081:186

    Google Scholar 

  65. Special Issue: J Raman Spectrosc 19XX; 28:111–70

  66. Halliday K, Sillerud L, Fenoglio-Preiser C. Carbon-13 and proton nuclear magnetic resonance spectroscopy and microscopy of neoplasms. Adv Pathol 1989; 2:213–58

    Google Scholar 

  67. Cassanas G, Morssli M, Fabregue E, Bardet L. Vibrational spectra of lactic acid and lactates. J Raman Spect 1991; 22:409–13

    Google Scholar 

  68. Goetz MJ Jr, Cote GL, Erckens R, March W, Motamedi M. Application of a multivariate technique to Raman spectra for quantification of body chemicals. IEEE Trans Biomed Engng 1995; 42:728–31

    Google Scholar 

  69. Berger AJ, Wang Y, Feld MS. Rapid, noninvasive concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy. Appl Opt 1996; 35:209–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barr, H., Dix, T. & Stone, N. Optical spectroscopy for the early diagnosis of gastrointestinal malignancy. Laser Med Sci 13, 3–13 (1998). https://doi.org/10.1007/BF00592955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00592955

Keywords

Navigation