Skip to main content
Log in

The effect of surface-limited microcracks on the effective Young's modulus of ceramics

Part I Analysis

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two types of composite layer model were used to characterize the surface-limited microcrack damage: (i) a dynamic modulus model and (ii) a rule-of-mixtures model. Each model can be applied to either one or two microcracked surface layers for all physically meaningful values of the relative thickness of the layer(s) and all physically meaningful values of the microcrack damage severity states. The microcrack severity can be described in terms of known functions of microcrack size, number density and orientation. A second paper will deal with the details of applying the models to microcracks of a particular geometry, while a third paper deals with experimental tests of the models presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kim, W. J. Lee andE. D. Case, in “Metal and Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior”, edited by R. B. Bhagat, A. H. Clauer, P. Kumar and A. M. Ritter (Minerals, Metals and Materials Society, Warrendale, PA, 1990) pp. 479–86.

    Google Scholar 

  2. Idem, in Proceedings of 5th Technical Conference, June 12–14 1990, East Lansing, MI, American Society for Composites (Technonic Publishing Co, Lancaster PA 1990) pp. 871–881.

    Google Scholar 

  3. W. J. Lee andE. D. Case,Mater. Sci. Engng A119 (1989) 113.

    Article  CAS  Google Scholar 

  4. Idem, J. Mater. Sci. 25 (1990) 5043.

    Article  CAS  Google Scholar 

  5. B. Budiansky andR. J. O'connell,Int. J. Solids Struct. 12 (1976) 81.

    Article  Google Scholar 

  6. A. Hoenig,ibid. 15 (1979) 137.

    Article  Google Scholar 

  7. N. Laws andJ. R. Brockenbrough,ibid. 23 (1987) 1247.

    Article  Google Scholar 

  8. D. P. H. Hasselman andJ. P. Singh,Amer. Ceram. Soc. Bull. 58 (1979) 856.

    CAS  Google Scholar 

  9. T. Yokobori andM. Ichikawa,J. Phys. Soc. Jpn. 19 (1964) 2341.

    Article  Google Scholar 

  10. W. R. Delameter, G. Herrmann andD. M. Barnett, “Solid by a Rectangular Array of Cracks”,J. Appl. Mech, Trans. ASME 43 (1975) 74.

    Article  Google Scholar 

  11. J. J. Mecholsky Jr, S. W. Freiman andR. W. Rice,J. Amer. Ceram. Soc. 60 (1977) 114.

    Article  Google Scholar 

  12. H. P. Kirchner andE. D. Issacson,ibid. 65 (1982) 55.

    Article  CAS  Google Scholar 

  13. H. P. Kirchner,ibid. 67 (1984) 127.

    Article  Google Scholar 

  14. Idem, ibid. 67 (1984) 347.

    Article  CAS  Google Scholar 

  15. T. J. Larchuk, J. C. Conway Jr andH. P. Kirchner,ibid. 68 (1985) 209.

    Article  Google Scholar 

  16. J. D. B. Veldkamp, N. Hattu andG. deWith, “High Temperature Scratching of Some Brittle Materials”, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) pp. 121–144.

    Chapter  Google Scholar 

  17. D. B. Marshall, in “Fracture in Ceramic Materials; Toughening Mechanisms, Machining Damage, Shock”, edited by A. G. Evans (Noyes, Park Ridge, New Jersey, 1984) pp. 190–220.

    Google Scholar 

  18. B. R. Lawn, A. G. Evans andD. B. Marshall,J. Amer. Ceram. Soc. 63 (1980) 574.

    Article  CAS  Google Scholar 

  19. B. R. Lawn andM. V. Swain,J. Mater. Sci. 10 (1975) 113.

    Article  CAS  Google Scholar 

  20. B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 62 (1979) 347.

    Article  CAS  Google Scholar 

  21. G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,ibid. 64 (1981) 533.

    Article  CAS  Google Scholar 

  22. B. R. Lawn andE. R. Fuller,J. Mater. Sci. 10 (1975) 2016.

    Article  CAS  Google Scholar 

  23. D. B. Marshall andB. R. Lawn,ibid. 14 (1979) 2001.

    Article  Google Scholar 

  24. J. F. Kalthoff andD. A. Shockney,J. Appl. Phys. 48 (1977) 986.

    Article  CAS  Google Scholar 

  25. A. G. Evans,ibid. 49 (1978) 3304.

    Article  Google Scholar 

  26. E. D. Case, in “Fracture Mechanics of Ceramics”, Vol. 7, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) pp. 211–222.

    Google Scholar 

  27. E. Case andA. G. Evans, in “Fracture in Ceramic Materials; Toughening Mechanisms, Machining Damage, Shock”, edited by A. G. Evans (Noyes, Park Ridge, New Jersey, 1984) pp. 404–415.

    Google Scholar 

  28. Y. Kim andE. D. Case,J. Mater. Sci. 28 (1993) 1901.

    Article  Google Scholar 

  29. Idem, ibid. 28 (1993) 1910.

    Article  CAS  Google Scholar 

  30. B. D. Agarwal andL. J. Broutman, “Analysis and Performance of Fiber Composites” (Wiley, New York, 1980) pp. 20–26.

    Google Scholar 

  31. M. V. Swain,J. Amer. Ceram. Soc. 73 (1990) 621.

    Article  CAS  Google Scholar 

  32. C. C. Chiu andE. D. Case,Mater. Sci. Engng A132 (1991) 39.

    Article  CAS  Google Scholar 

  33. E. Volterra andE. C. Zachmanoglou, “Dynamics of Vibrations” (Merrill, Columbus, Ohio, 1965) pp. 321–322.

    Google Scholar 

  34. S. K. Clark, “Dynamics of Continuous Elements” (Prentice Hall, Englewood Cliffs, New Jersey, 1972) pp. 75–87.

    Google Scholar 

  35. S. P. Timoshenko andD. H. Young, “Strength of Materials”, 4th Edn (Van Nostrand, Reinhold, Princeton, 1962) pp. 113–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Case, E.D., Kim, Y. The effect of surface-limited microcracks on the effective Young's modulus of ceramics. J Mater Sci 28, 1885–1900 (1993). https://doi.org/10.1007/BF00595762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00595762

Keywords

Navigation