Skip to main content
Log in

Self-diffusion of iron and sulfur in ferrous sulfide

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

By use of radiotracer techniques, the iron self-diffusion coefficient in ferrous sulfide single crystals above 620 K was found to be D = D 0δ exp {−[(81±4) + (84±20)δ]/RT}where the exponential units are kJ/mole, D 0 is 1.7± 0.1×10−2 and 3.0±0.2 × 10−2 cm2 sec−1 for diffusion in the a- and c-directions, respectively, and δ is the deviation from stoichiometry as given in the formula, Fe 1-δS.This is a vacancy diffusion mechanism and is discussed in detail. Below 570 K the coefficient is lower than the values given by this equation because of vacancy ordering. The diffusion coefficient for sulfur is many orders of magnitude smaller than for iron. The significance of the data for the Fe−S 2 reaction and other examples of iron diffusion is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Condit, inKinetics of High Temperature Processes, W. D. Kingery, Ed. (J. Wiley, New York, 1959), p. 97.

    Google Scholar 

  2. R. H. Condit, “Self-Diffusion of Iron and Sulfur in Ferrous Sulfiide,” PhD Thesis, Princeton University, Univ. Microfilms (Ann. Arbor, Mich.), L. C. Card No. Mic-60-4974;Dissertation Abstr. 21, 2124 (1961).

  3. R. R. Hobbins, Jr., and C. E. Birchenall (Abstr.),J. Metals 21(3), 50A (1969).

    Google Scholar 

  4. R. R. Hobbins, “Self-Diffusion of Iron in Single Crystals of Ferrous Sulfide and Magnetically Saturated Iron,” PhD Thesis, University of Delaware, Univ. Microfilms 69–21, 964; Dissertation Abstr.30B, 3204 (1970).

  5. A. Kyekshus and W. B. Pearson, inProgress in Solid State Chemistry, Vol. 1, H. Reiss, Ed. (Pergamon Press and Macmillan Co., New York, 1964), pp. 83–174.

    Google Scholar 

  6. E. F. Bertaut,Acta Cryst. 6, 557 (1953).

    Google Scholar 

  7. J. A. Schideler, “A Study of Iron Sulfide (Fe1−δS) (0.906 ≥ 1−δ ≥ 0.893) Using the Technique of Polarized and Unpolarized Neutron Diffraction,” Lawrence Livermore Laboratory, Rept. UCRL-51355 (1973).

  8. E. J. Fasiska,Phys. Status Solidi 10, 169 (1972).

    Google Scholar 

  9. S. Hafner,Z. Krist. 123, 443 (1966).

    Google Scholar 

  10. R. J. P. Lyon,Trans. AIME 214, Tech. Publ. No. 48141;Mining Eng. 11, 1145 (1959).

  11. G. Kullerud, inResearch in Geochemistry, P. H. Abelson, Ed. (J. Wiley, New York, 1967), pp. 286–321.

    Google Scholar 

  12. L. A. Taylor, “Low Temperature Phase Relations in the Fe-S System,” in Annual Rept. of the Director, Carnegie Institution Geophysical Laboratory for 1968-9, Washington, D.C. (1970), pp. 259–270.

  13. N. Morimoto, H. Nakazawa, K. Nishiguchi, and M. Tokonami,Science 168, 964 (1970).

    Google Scholar 

  14. T. Rosenqvist,J. Iron and Steel Inst. 176, 37 (1954).

    Google Scholar 

  15. R. G. Arnold,Econ. Geol. 57, 72 (1962).

    Google Scholar 

  16. E. Jensen,Amer. J. Sci. 240, 695 (1942).

    Google Scholar 

  17. P. Toulmin, III and P. B. Barton, Jr.,Geochim. Cosmochim. Acta 28, 641 (1964).

    Google Scholar 

  18. G. Kullerud and H. S. Yoder,Econ. Geol. 54, 533 (1959).

    Google Scholar 

  19. R. G. Arnold,Econ. Geol. 64, 405 (1969).

    Google Scholar 

  20. H. Nakazawa and N. Morimoto,Mater. Res. Bull. 6, 345 (1971).

    Google Scholar 

  21. H. Haraldsen,Z. Anorg. Chem. 246, 169 (1941).

    Google Scholar 

  22. H. Haraldsen,Z. Anorg. Chem. 246, 195 (1941).

    Google Scholar 

  23. F. Gronvald and H. Haraldsen,Acta Chem. Scand. 6, 1452 (1952).

    Google Scholar 

  24. M. Nagamori and M. Kameda,Nippon Kinzoku Gakkaishi 31(3), 248 (1967).

    Google Scholar 

  25. G. Urbain, W. Burgmann, and M. G. Frohberg,Acad. Sci., Paris, Ser. C,263, 595 (1966).

    Google Scholar 

  26. K. Niwa and T. Wada, in Metallurgical Soc. Conf. (AIME), G. R. St. Pierre, Ed., Vol. 8 (1961), p. 945.

  27. D. M. Chizhikov, L. V. Nikiforov, and U. A. Lainer,Zh. Neorg. Khim 14, 2299 (1969).

    Google Scholar 

  28. O. C. Roberts, D. G. C. Robertson, and A. E. Jenkins,Trans. AIME 245, 2413 (1969).

    Google Scholar 

  29. C. B. van den Berg and R. C. Thiel,Z. Anorg. Allgem. Chem. 368, 106 (1969).

    Google Scholar 

  30. A. J. Naldrett,J. Petrology 10, 171 (1969).

    Google Scholar 

  31. S. Zelouf and G. Simkovich,Trans. AIME 245, 875 (1969).

    Google Scholar 

  32. S. Zelouf and G. Simkovich,Metal Trans. 1, 300 (1970).

    Google Scholar 

  33. R. F. Bacon and R. Fanelli,Ind. Eng. Chem. 34, 1043 (1942).

    Google Scholar 

  34. M. Yamamoto and J. Watanabe,Sci. Rep. Tokuhu Univ., Ser. 1,A2, 270 (1950).

    Google Scholar 

  35. J. B. Wagner, Jr., inMass Transport in Oxides, J. B. Wachtman and A. D. Franklin, Eds. (U.S. Nat. Bur. Stand. Spec. Publ. 296, Washington, D.C., 1968), pp. 65–77.

  36. R. G. Arnold and L. E. Reichen,Am. Mineral. 47, 105 (1962).

    Google Scholar 

  37. R. G. Arnold,Am. Mineral. 51, 1221 (1966).

    Google Scholar 

  38. E. T. Turkdogan,Trans. AIME 242, 1665 (1968).

    Google Scholar 

  39. R. E. Carter and F. D. Richardson,Trans. AIME 200, 1244 (1954).

    Google Scholar 

  40. F. H. Eisen and C. E. Birchenall,Acta Met. 5, 265 (1957).

    Google Scholar 

  41. R. H. Condit and C. E. Birchenall,J. Metals 8, 1341 (1956).

    Google Scholar 

  42. R. H. Condit, “Determination of Diffusion Coefficients in Solids by the Residual Activity Method,” Princeton University, Metallurgy Rept. No. 19, AFOSR-TN59-150, Contract AF18(600)-967 (1959).

  43. N. F. M. Henry, H. Lipson, and W. A. Wooster,The Interpretation of X-ray Diffraction Photographs (Macmillan, London, 1951), p. 236.

    Google Scholar 

  44. T. S. Lundy and J. I. Federer,Trans. AIME 224, 1285 (1962).

    Google Scholar 

  45. S. M. Klotsman, A. N. Timofeyev, and I. Sh. Trakhtenberg,Fiz. Metal Metallovd. 16, 743 (1963); alsoPhysics of Metals and Metallography 16(5), 92 (1963).

    Google Scholar 

  46. K. Fueki, Y. Oguri, and T. Makaibo,Bull. Chem. Soc. Japan 41, 569 (1968).

    Google Scholar 

  47. M. Hayakawa, J. B. Cohen, and T. B. Reed,J. Amer. Ceramic Soc. 55, 160 (1972).

    Google Scholar 

  48. G. G. Libowitz, “Energetics of Defect Formation and Interaction in Nonstoichiometric Pyrrhotite,” inProc. Int. Symp. Reactiv. Solids, 7th Bristol, 1972, to be published.

  49. K. Friedrich,Metallurgie (Halle)7, 257 (1910).

    Google Scholar 

  50. C. B. van den Berg, J. Delden, and J. Bouman,Phys. Status Solidi 36, K89 (1969).

    Google Scholar 

  51. W. L. Worrell and E. T. Turkdogan,Trans. AIME 242, 1673 (1968).

    Google Scholar 

  52. W. L. Worrell and E. T. Turkdogan,Metal. Trans. 1, 299 (1970).

    Google Scholar 

  53. F. H. Meyer, O. L. Riggs, R. L. McGlasson, and J. D. Sudburg,Corrosion 14, 69 (1958).

    Google Scholar 

  54. I. F. Hughes and E. W. Page,Metal Trans. 1, 1077 (1970).

    Google Scholar 

  55. O. Kubaschewski and E. Evans,Metallurgical Thermochemistry (Pergamon Press, New York, 1958), p. 426.

    Google Scholar 

  56. J. O. Barner, “Design of a Differential Calorimeter Suitable for Measurement of High Temperature Heats of Solid State Reactions,” Lawrence Radiation Laboratory, Berkeley, Calif., Rept. UCRL-10631 (1963).

    Google Scholar 

  57. T. Hirone, Ś. Maeda, S. Chiba, and N. Tsuya,J. Phys. Soc. (Japan)9, 500 (1954).

    Google Scholar 

  58. A. Wanic,Colloq. Int. Cent. Nat. Rech. No. 126, 203 (1964).

    Google Scholar 

  59. Sz. Krasnicki, A. Wanic, Z. Dimitrijevic, R. Maglic, V. Markovic, and T. Todorovic,J. Phys. (Paris)25, 634 (1964).

    Google Scholar 

  60. P. V. Gel'd and A. K. Krasovskaya,Zh. Fiz. Khim. 34, 1721 (1960).

    Google Scholar 

  61. K. Hauffe and A. Rahmel,Z. Phys. Chem. 199, 152 (1952).

    Google Scholar 

  62. M. Chevreton, E. F. Bertaut, and Simone Burnie,Bull. Soc. Sci. (Bretagne)39 (Hors Ser.), 77 (1964).

    Google Scholar 

  63. S. Takeno,J. Sci. Hiroshima Univ., Ser. C 5, 113 (1966).

    Google Scholar 

  64. G. A. Desborough and R. H. Carpenter,Econ. Geol. 60, 1431 (1965).

    Google Scholar 

  65. H. Mukaiyama and E. Izawa,Kyushu Kazan Gakkai-Shi,34(5), 194 (1966).

    Google Scholar 

  66. T. Hirone, S. Maeda, and N. Tsuya,J. Phys. Soc. (Japan)9, 736 (1954).

    Google Scholar 

  67. F. K. Lotgering,Philips Res. Repts. 11, 190 (1956).

    Google Scholar 

  68. L. V. Azaroff,J. Appl. Phys. 32, 1658 (1961).

    Google Scholar 

  69. S. M. Klotsman, A. N. Timofeyev and I. Sh. Trakhtenberg,Fiz. Metal. Metalloved. 17, 132 (1964) andPhys. Metals and Metallogr. 17, 119 (1964).

    Google Scholar 

  70. L. Pauling,The Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, N.Y., 1960), 3rd ed.

    Google Scholar 

  71. E. F. Bertaut, P. Burlet, and J. Chappert,Solid. State Commun. 3, 335 (1965).

    Google Scholar 

  72. S. Yamaguchi and H. Wada,Zeit. F. Anorg. U. Allgem. Chem. 377, 339 (1970).

    Google Scholar 

  73. M. E. Fleet,Acta Cryst. B27, 1864 (1971).

    Google Scholar 

  74. R. H. Condit, inMaterials Science Research, Vol. 4, T. Gray and V. D. Frechette, Eds. (Plenum Press, New York, 1969), pp. 284–303.

    Google Scholar 

  75. A. D. Le Claire, inPhysical Chemistry-An Advanced Treatise, Vol. 10, W. Jost, Ed. (Academic Press, New York, 1970), pp. 261–330.

    Google Scholar 

  76. P. G. Shewmon,Diffusion in Solids (McGraw-Hill, New York, 1963), p. 106.

    Google Scholar 

  77. J. C. Ward,Solid State Commun. 9, 357 (1971).

    Google Scholar 

  78. J. S. Andersen, inThe Chemistry of Extended Defects in Non-Metallic Solids, L. R. Eyring and M. O'Keeffe, Eds. (North Holland, Amsterdam, 1970), pp. 1–20.

    Google Scholar 

  79. G. G. Libowitz, inMass Transport in Oxides, J. B. Wachtman and A. D. Franklin, Eds. (U.S. Nat. Bur. Stand. Special Publ. 296, Washington, D. C., 1968), pp. 109–118.

  80. E. F. Fender and F. D. Riley,J. Phys. Chem. Solids 30, 793 (1969).

    Google Scholar 

  81. R. J. Friauf,Phys. Rev. 105, 843 (1957).

    Google Scholar 

  82. S. Mrowec,Bull. Acad.Pol. Sci., Ser. Sci. Chim.,15, 517 (1967).

    Google Scholar 

  83. B. J. Wuensch,Mineral. Soc. Am. Spec. Paper No. 1, 157 (1963).

    Google Scholar 

  84. C. Wagner, inAtom Movements (Am. Soc. Metals, Cleveland, 1951), p. 153.

    Google Scholar 

  85. A. Brückman, S. Mrowec, and T. Werber,Z. Physik. Chem. (Leipzig)231, 375 (1966).

    Google Scholar 

  86. S. Mrowec,Bull. Acad. Pol. Sci., Ser. Sci. Chim. 15, 521 (1967).

    Google Scholar 

  87. S. Mrowec,Bull. Acad. Pol. Sci., Ser. Sci. Chim. 15, 527 (1967).

    Google Scholar 

  88. F. Jamin-Changeart and S. Talbot-Besnard,Mem. Sci. Rev. Met. 62, 305 (1965).

    Google Scholar 

  89. L. Yang, S. Kado, and G. Derge, inKinetics of High Temperature Processes, W. D. Kingergy, Ed. (J. Wiley, New York, 1959), pp. 79–80.

    Google Scholar 

  90. I. S. Trajkov,Tehnika (Belgrade)20, 145 (1965);Technika (Belgrade)20, 1496 (1965).

    Google Scholar 

  91. R. A. Meussner and C. E. Birchenall,Corrosion 13, 677t (1957).

    Google Scholar 

  92. A. Brückman and J. Romanski,Corros. Sci. 5, 185 (1965).

    Google Scholar 

  93. J. Berkowitz, inElemental Sulfur, Chemistry and Physics, B. Meyer, Ed. (Interscience, New York, 1965), p. 125.

    Google Scholar 

  94. K. N. Strafford,Metals Rev. 14(138), 153 (1969).

    Google Scholar 

  95. C. E. Birchenall, Univ. of Delaware, unpublished.

  96. W. C. Hagel and H. J. Beattie,precipitation Processes in Steels (Iron and Steel Institute, London, 1959), p. 98.

    Google Scholar 

  97. W. E. Quist, R. Taggart, and D. H. Polonis,Metallurg. Trans. 2, 825 (1971).

    Google Scholar 

  98. D. R. Killoran,J. Electrochem. Soc. 109, 170 (1962).

    Google Scholar 

  99. A. J. Naldrett,Canad. Mining and Metal. Bull. 69, 147 (April 1966).

    Google Scholar 

  100. G. Kullerud, “The FeS-ZnS System, A Geological Thermometer,”Nor. Geol. Tidsskr. 32, 61 (1953).

    Google Scholar 

  101. J. J. Naughton and Y. Fujikawa,Nature 184, BA54 (1959).

    Google Scholar 

  102. L. Himmel, R. F. Mehl, and C.E. Birchenall,Trans. AIME 197, 827 (1953).

    Google Scholar 

  103. R. H. Condit, M. J. Brabers, and C. E. Birchenall,Trans. AIME 218, 768 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condit, R.H., Hobbins, R.R. & Birchenall, C.E. Self-diffusion of iron and sulfur in ferrous sulfide. Oxid Met 8, 409–455 (1974). https://doi.org/10.1007/BF00603390

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603390

Key words

Navigation