Skip to main content
Log in

High-temperature oxidation of alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Some recent developments in the understanding of the oxidation of alloys at elevated temperatures are reviewed, with special reference to binary and ternary alloys upon which many commercial materials are based. Following an initial classification of alloy systems, certain basic principles and their limitations are considered, including factors determining whether an alloy displays surface scaling only, internal oxidation only, or both phenomena; the mode of distribution of cations in an oxide solid solution growing on an alloy; and doping and the Wagner-Hauffe rules. Previous alloy oxidation theory has concerned itself principally with steady-state oxidation but, in practice, behavior of the oxidizing sample in approaching the steady state, both upon initial exposure to the environment and after scale spalling induced isothermally or during thermal cycling, is often as important. Such behavior is illustrated in terms of scale establishment and with respect to compositional changes in the subjacent alloy, the importance of certain alloy and oxide properties being emphasized. After further brief consideration of steady-state scaling, the causes and consequences of breakaway oxidation are presented. The role of major and minor concentrations of third elements on scaling behavior is discussed. The paper concludes with brief reference to situations not considered in detail and with aspects requiring further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad,High-Temperature Oxidation of Metals (Wiley, New York, 1966).

    Google Scholar 

  2. K. Hauffe,Oxidation of Metals (Translation from German), (Plenum Press, New York, 1965).

    Google Scholar 

  3. J. Bénard, ed.,L'Oxydation des Metaux, Vols. 1 and 2 (Gauthier-Villars, Paris, 1962 and 1964).

    Google Scholar 

  4. U. R. Evans,The Corrosion and Oxidation of Metals, Supplement (Arnold, London, 1968).

    Google Scholar 

  5. O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys, 2nd ed. (Butterworth, London, 1967).

    Google Scholar 

  6. G. C. Wood, in:Techniques in Metals Research, Vol. 4, R. A. Rapp, assoc. ed. (Interscience, New York, 1970).

    Google Scholar 

  7. G. C. Wood, in:Reports on the Progress of Applied Chemistry 1968, Vol. 53 (Society of Chemical Industry, London, 1969), p. 57.

    Google Scholar 

  8. J. Moreau and J. Bénard,L'Oxydation des Metaux, Vol. 1 (Gauthier-Villars, Paris, 1962), p. 318.

    Google Scholar 

  9. C. Wagner,J. Electrochem. Soc. 99, 369 (1952);103, 571, 627 (1956).

    Google Scholar 

  10. C. Wagner,Z. Elektrochem. 63, 773 (1959).

    Google Scholar 

  11. C. Wagner,Corrosion Sci. 5, 751 (1965).

    Google Scholar 

  12. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  13. G. Bohm and M. Kahlweit,Acta Met. 12, 641 (1964).

    Google Scholar 

  14. C. Wagner,Z. Physik. Chem. B21, 25 (1933).

    Google Scholar 

  15. C. Wagner, in:Atom Movements (American Society for Metals, Cleveland, Ohio, 1951).

    Google Scholar 

  16. W. J. Moore and J. K. Lee,Trans. Faraday Soc. 48, 916 (1952).

    Google Scholar 

  17. J. P. Baur, E. S. Bartlett, J. N. Ong, and W. M. Fassell,J. Electrochem. Soc. 110, 185 (1963).

    Google Scholar 

  18. K. Fueki and J. B. Wagner,J. Electrochem. Soc. 112, 384 (1965).

    Google Scholar 

  19. B. Fisher and D. S. Tannhauser,J. Electrochem. Soc. 111, 1194 (1964).

    Google Scholar 

  20. B. Fisher and D. S. Tannhauser,J. Chem. Phys. 44, 1663 (1966).

    Google Scholar 

  21. J. E. Castle and G. C. Wood, in:Proc. Symposium on Scanning Electron Microscopy, O. Johari, ed. (I.I.T. Research Institute, Chicago, 1968), p. 41.

    Google Scholar 

  22. N. Birks and H. Rickert,J. Inst. Metals 91, 308 (1962/63).

    Google Scholar 

  23. G. C. Wood and T. Hodgkiess,Nature (London) 211, 685 (1966).

    Google Scholar 

  24. P. K. Kofstad and A. Z. Hed,J. Electrochem. Soc. 116, 224, 229 (1969).

    Google Scholar 

  25. T. Hodgkiess, Ph.D. Thesis, Univ. of Manchester, 1967.

  26. C. T. Fujii and R. A. Meussner,J. Electrochem. Soc. 110, 1195 (1963);111, 1215 (1964).

    Google Scholar 

  27. C. Wagner,Corrosion Sci. 9, 91 (1969).

    Google Scholar 

  28. G. C. Wood and J. M. Ferguson,Nature (London) 208, 369 (1965).

    Google Scholar 

  29. J. M. Ferguson, Ph.D. Thesis, Univ. of Manchester, 1967.

  30. C. Wagner,Corrosion Sci. 8, 889 (1968).

    Google Scholar 

  31. G. C. Wood, F. H. Stott, and I. G. Wright, unpublished work.

  32. F. S. Pettit,Trans. AIME 239, 1296 (1967).

    Google Scholar 

  33. D. L. Douglass,Corrosion Sci. 8, 665 (1968).

    Google Scholar 

  34. C. T. Fujii and R. A. Meussner,Trans. AIME 242, 1259 (1968).

    Google Scholar 

  35. W. C. Hagel,Trans. Am. Soc. Metals 56, 583 (1963).

    Google Scholar 

  36. C. S. Tedmon, Jr.,Corrosion Sci. 7, 525 (1967).

    Google Scholar 

  37. G. C. Wood and T. Hodgkiess,J. Electrochem. Soc. 113, 319 (1966).

    Google Scholar 

  38. R. L. Levin and J. B. Wagner, Jr.,J. Electrochem. Soc. 108, 954 (1961).

    Google Scholar 

  39. D. P. Whittle and G. C. Wood,J. Inst. Metals 96, 115 (1968).

    Google Scholar 

  40. D. P. Whittle and G. C. Wood,Corrosion Sci. 8, 295 (1968).

    Google Scholar 

  41. D. P. Whittle and G. C. Wood,Brit. Corrosion J. 3, 294 (1968).

    Google Scholar 

  42. G. C. Wood, B. Chattopadhyay, and D. P. Whittle, unpublished work.

  43. G. C. Wood, T. Hodgkiess, and D. P. Whittle,Corrosion Sci. 6, 129 (1966).

    Google Scholar 

  44. V. R. Howes,Corrosion Sci. 7, 735 (1967).

    Google Scholar 

  45. M. Warzee, M. Maurice, C. Sonnen, J. Waty, and Ph. Berge,Rev. Met. 61, 593 (1964).

    Google Scholar 

  46. G. C. Wood and S. I. Ali, unpublished work.

  47. D. Caplan and M. Cohen,Corrosion Sci. 6, 321 (1966);7, 725 (1967).

    Google Scholar 

  48. S. I. Ali and G. C. Wood,J. Inst. Metals 97, 6 (1969).

    Google Scholar 

  49. D. P. Whittle and G. C. Wood,J. Electrochem. Soc. 114, 986 (1967);115, 126, 133 (1968).

    Google Scholar 

  50. G. C. Wood and D. P. Whittle,Corrosion Sci. 7, 763 (1967).

    Google Scholar 

  51. D. Caplan and M. Cohen,J. Electrochem. Soc. 112, 471 (1965).

    Google Scholar 

  52. D. Caplan, A. Harvey, and M. Cohen,J. Electrochem. Soc. 108, 134 (1961).

    Google Scholar 

  53. D. Mortimer and M. L. Post,Corrosion Sci. 8, 499 (1968).

    Google Scholar 

  54. D. Mortimer and W. B. A. Sharp,Brit. Corrosion J. 3, 61 (1968).

    Google Scholar 

  55. J. Boustead and G. C. Wood, unpublished work.

  56. C. S. Tedmon Jr.,J. Electrochem. Soc. 114, 788 (1967).

    Google Scholar 

  57. C. S. Tedmon Jr.,J. Electrochem. Soc. 113, 766 (1966).

    Google Scholar 

  58. C. W. Tuck,Corrosion Sci. 5, 631 (1965).

    Google Scholar 

  59. W. C. Hagel,Corrosion 21, 316 (1965).

    Google Scholar 

  60. F. Saegusa and L. Lee,Corrosion 22, 168 (1966).

    Google Scholar 

  61. R. T. Foley,J. Electrochem. Soc. 109, 1202 (1962).

    Google Scholar 

  62. I. A. Menzies and W. J. Tomlinson,J. Iron Steel Inst. 204, 1239 (1966).

    Google Scholar 

  63. I. A. Menzies and W. J. Tomlinson,Brit. Corrosion J. 2, 235 (1967).

    Google Scholar 

  64. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood,Acta Met. 15, 1421 (1967).

    Google Scholar 

  65. D. P. Whittle and G. C. Wood,Scripta Met. 1, 61 (1967).

    Google Scholar 

  66. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully,Acta Met. 15, 1747 (1967).

    Google Scholar 

  67. D. A. Melford,J. Iron Steel Inst. 200, 290 (1962).

    Google Scholar 

  68. V. R. Howes,Corrosion Sci. 8, 221, 729 (1968).

    Google Scholar 

  69. J. M. Francis and W. H. Whitlow,J. Iron Steel Inst. 203, 468 (1965);204, 355 (1966).

    Google Scholar 

  70. M. G. Hobby and G. C. Wood,Oxidation of Metals 1, 23 (1969).

    Google Scholar 

  71. G. C. Wood, M. G. Hobby, and B. VaszkoJ. Iron Steel Inst. 202, 685 (1964); 20354 (1965).

    Google Scholar 

  72. D. Caplan and M. Cohen,Nature (London) 205, 690 (1965).

    Google Scholar 

  73. D. Caplan, P. E. Beaubien, and M. Cohen,Trans. AIME 233, 766 (1966).

    Google Scholar 

  74. J. M. Francis, C. J. Lee and J. H. Buddery,J. Iron Steel Inst. 206, 921 (1968).

    Google Scholar 

  75. M. G. Hobby, M.Sc. Thesis, Univ. of Manchester, 1968.

  76. G. C. Wood and M. G. Hobby,Proc. 3rd Int. Congress on Corrosion, 1966 (Moscow, in press).

  77. G. C. Wood, J. A. Richardson, M. G. Hobby, and J. Boustead,Corrosion Sci. 9, 659 (1969).

    Google Scholar 

  78. A. U. Seybolt,Corrosion Sci. 6, 263 (1966).

    Google Scholar 

  79. J. M. Francis and W. H. Whitlow,Corrosion Sci. 5, 701 (1965).

    Google Scholar 

  80. J. E. Antill and K. A. Peakall,J. Iron Steel Inst. 205, 1136 (1967).

    Google Scholar 

  81. G. C. Wood and J. Boustead,Corrosion Sci. 8, 719 (1968).

    Google Scholar 

  82. R. A. Rapp and G. N. Goldberg,Trans. AIME 236, 1619 (1966).

    Google Scholar 

  83. I. A. Menzies and K. N. Strafford,Corrosion Sci. 7, 23 (1967).

    Google Scholar 

  84. H. R. Johnson and D. J. Littler, eds.,The Mechanism of Corrosion by Fuel Impurities (Butterworths, London, 1963).

    Google Scholar 

  85. P. Hancock,Corrosion of Alloys at High Temperatures in Atmospheres Consisting of Fuel Combustion Products and Associated Impurities (H.M.S.O., London, 1968).

    Google Scholar 

  86. D. R. Holmes,Corrosion Sci. 8, 603 (1968).

    Google Scholar 

  87. S. Mrowec, T. Werber, and M. Zastawnik,Corrosion Sci. 6, 47 (1966).

    Google Scholar 

  88. S. Mrowec, S. Tochowicz, T. Werber, and J. Podhorodecki,Corrosion Sci. 7, 697 (1967).

    Google Scholar 

  89. S. Mrowec, T. Werber, and J. Podhorodecki,Corrosion Sci. 8, 815 (1968).

    Google Scholar 

  90. W. B. Jepson, J. E. Antill, and J. B. Warburton,Brit. Corrosion J. 1, 15 (1965).

    Google Scholar 

  91. P. J. Burkhardt,J. Electrochem. Soc. 114, 196 (1967).

    Google Scholar 

  92. G. C. Wood, J. M. Ferguson, B. Vaszko, and D. P. Whittle,J. Electrochem. Soc. 114, 535 (1967).

    Google Scholar 

  93. C. Wagner, Private communication; also C. Wagner and K. Zimens,Acta Chem. Scand. 1, 547 (1947).

  94. B. D. Lichter and C. Wagner,J. Electrochem. Soc. 107, 168 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, G.C. High-temperature oxidation of alloys. Oxid Met 2, 11–57 (1970). https://doi.org/10.1007/BF00603581

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603581

Keywords

Navigation