Skip to main content
Log in

The diffusion of oxygen in Zirconia as a function of oxygen pressure

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Diffusion of oxygen in monodinic zirconia was studied using the oxygen-18 gas-solid exchange technique. The zirconia was in the form of spheres prepared by dropping the powdered material through a high temperature plasma. Diffusion was measured as a function of equivalent oxygen pressure, using oxygen and CO-CO2 mixtures, over the range 1 to 1021 atm. In pure oxygen at 700 Torr and between 600 and 1000°C, the diffusion is described by the equation,D =2.34×102 exp — (45,300±1200)/RT. Experiments in CO-CO2 mixtures at 850°C gave self-diffusion coefficients that showed a slight decrease with a decrease in\(P_{O_2 } \) D from 10−6 atm, and finally a decrease inD from 10−19 to 10−21 atm. The behavior ofD with\(P_{O_2 } \) appears to be in agreement with a defect model involving anti-Frenkel imperfections, i.e., oxygen interstitials and anion vacancies, if it is assumed that the mobility for oxygen interstitials is greater than that for oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Rosa,J. Less Common Metals 16, 173 (1968).

    Google Scholar 

  2. P. Kofstad and D. J. Ruzicka,J. Electrochem. Soc. 110, 181 (1963).

    Google Scholar 

  3. R. W. Vest, N. M. Tallan, and W. C. Tripp,J. Am. Ceram. Soc. 47, 635 (1964).

    Google Scholar 

  4. R. W. Vest and N. M. Tallan,J. Am. Ceram. Soc. 48, 472 (1965).

    Google Scholar 

  5. F. A. Kroger,J. Am. Ceram. Soc. 49, 215 (1966).

    Google Scholar 

  6. S. Aronson,J. Electrochem. Soc. 108, 312 (1961).

    Google Scholar 

  7. D. L. Douglass,Corrosion of Reactor Materials (International Atomic Energy Agency, Vienna, 1962), Vol. 2, p. 223.

    Google Scholar 

  8. J. Debuigne and P. Lehr,Compt. Rend. 256, 1113 (1963).

    Google Scholar 

  9. T. Smith,J. Electrochem. Soc. 112, 560 (1965).

    Google Scholar 

  10. C. J. Rosa and W. Hagel,Trans. Met. Soc. AIME 242, 1293 (1968).

    Google Scholar 

  11. A. Madeyski and W. W. Smeltzer,Mater. Res. Bull. 3, 369 (1968).

    Google Scholar 

  12. B. Cox and J. P. Pemsler,J. Nucl. Mater. 28, 73 (1968).

    Google Scholar 

  13. A. Madeyski, D. J. Poulton, and W. W. Smeltzer,Acta Met. 17, 579 (1969).

    Google Scholar 

  14. D. L. Douglass and C. Wagner,J. Electrochem. Soc. 113, 671 (1966).

    Google Scholar 

  15. T. F. Schroeder, S. C. Carniglia, and S. C. Brown, Rocketdyne Report R-7525, Canoga Park, Calif., 24 June 1968.

  16. C. W. Marynowski and A. G. Monroe,High Temperature Technology (Butterworths, Washington, 1964), pp. 67–84.

    Google Scholar 

  17. C. W. Marynowski, F. A. Halden, and E. P. Farley,Electrochem. Technol. 3, 111 (1965).

    Google Scholar 

  18. J. S. Watson,Can. J. Technol. 34, 373 (1956).

    Google Scholar 

  19. F. D. Richardson and C. B. Alcock, inPhysicochemical Measurements at High Temperatures, J. O'M. Bockris, J. S. White, and J. D. MacKenzie, eds. (Butterworths Scientific Publ., London, 1959), p. 138ff.

    Google Scholar 

  20. E. L. Williams,J. Am. Ceram. Soc. 48, 190 (1965).

    Google Scholar 

  21. P. C. Carman and R. A. W. Haul,Proc. Roy. Soc. 222A, 109 (1954).

    Google Scholar 

  22. G. N. Lewis and M. Randall,Thermodynamics, revised by K. G. Pitzer and L. Brewer (McGraw Hill, New York, 1961), Appendix 7.

    Google Scholar 

  23. Y. Oishi and W. D. Kingery,J. Chem. Phys. 33, 480 (1960).

    Google Scholar 

  24. D. J. Poulton and W. W. Smeltzer,J. Electrochem. Soc. 117, 378 (1970).

    Google Scholar 

  25. R. W. Ure,J. Chem. Phys. 26, 1363 (1957).

    Google Scholar 

  26. P. Kofstad,Corrosion 24, 379 (1968).

    Google Scholar 

  27. R. F. Domagala and D. J. McPherson,Trans. Met. Soc. AIME 200, 238 (1954).

    Google Scholar 

  28. F. Keneshea and D. Douglass, unpublished data.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keneshea, F.J., Douglass, D.L. The diffusion of oxygen in Zirconia as a function of oxygen pressure. Oxid Met 3, 1–14 (1971). https://doi.org/10.1007/BF00604736

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00604736

Keywords

Navigation