Skip to main content
Log in

Landmark learning in bees

Experiments and models

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The experiments described here were undertaken to discover how bees use nearby landmarks to guide their way to a food source. Two major questions are raised. First, what do bees learn about the spatial layout of landmarks and food source? Secondly, how might this information help them reach their destination?

  2. 2.

    Single, marked bees were trained to collect sugar solution from a small and inconspicuous reservoir in a room in which extraneous visual cues had been reduced to a minimum. The position of the reservoir was defined by an array of one or more matt black landmarks. After bees had been trained, their flight path was recorded on videotape when the landmarks were present, but the food source absent. During such tests bees spent most of their time searching where the food source should have been.

  3. 3.

    Thus, if bees were trained to a reservoir whose position was specified by a single cylindrical landmark and tested with the same landmark, they searched at the expected site of the reservoir. However, when the size of the landmark was changed between training and testing, the area in which bees searched was displaced to one where the landmark appeared roughly the same size as the training landmark when viewed from the reservoir. These experiments suggest that bees learn no more than the apparent size and bearing of the landmark as seen from the food source, and that to return there they move to a position where their retinal image matches their remembered image of the landmark.

  4. 4.

    Experiments with more complex arrays of landmarks support the same hypothesis. A simple rule predicts a bee's search area when it is trained to a food source defined by the position of three landmarks and tested either with the same array, or with landmarks of different sizes, or with landmarks placed at different distances from the reservoir. The bee then always searches where the compass bearings of the landmarks on its retina were the same as they had been when it was stationed at the food source.

  5. 5.

    Tests with bees trained to either one or three landmarks suggest that the bearings of landmarks on the retina are learnt with respect to external compass bearings. Thus, a single, cylindrical landmark does not define direction. Nonetheless, bees searched in one location and not in a circle centred on the landmark. Bees trained to three landmarks only learnt the site of the reservoir if the array was kept in a constant orientation during training.

  6. 6.

    Computer models were devised to discover how bees might use a remembered image of the landmark array to direct their flight path to their destination. The models simulated a situation in which a bee takes a 2-dimensional snapshot of its surroundings from the position it wishes to retrieve and continuously compares this with its current retinal image. It then uses the difference between the two to guide its way. Different models of increasing complexity were explored until one was found which closely mimicked the bee's behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson AM (1977) A model for landmark learning in the honeybee. J Comp Physiol 114:335–355

    Google Scholar 

  • Beusekom Gvan (1948) Some experiments on the optical orientation inPhilanthus triangulum Fabr. Behaviour 1:195–225

    Google Scholar 

  • Cartwright BA, Collett TS (1979) How honey bees know their distance from a nearby landmark. J Exp Biol 82:367–372

    Google Scholar 

  • Cartwright BA, Collett TS (1982) How honey bees use landmarks to guide their return to a food source. Nature 295:560–564

    Google Scholar 

  • Collett TS (1980) Some operating rules for the optomotor system of a hoverfly during voluntary flight. J Comp Physiol 138:271–282

    Google Scholar 

  • Collett TS, Land MF (1975) Visual spatial memory in a hoverfly. J Comp Physiol 100:59–84

    Google Scholar 

  • Dyer FC, Gould JL (1981) Honey bee orientation: a backup system for cloudy days. Science 214:1041–1042

    Google Scholar 

  • Frisch K von (1967) The dance language and orientation of bees. Belknap Press of Harvard University Press, Cambridge, (Massachusetts)/Oxford University Press, London

    Google Scholar 

  • Frisch K von, Lindauer M (1954) Himmel und Erde in Konkurrenz bei der Orientierung der Bienen. Naturwissenschaften 41:245–253

    Google Scholar 

  • Heinrich B (1976) The foraging specialisations of individual bumblebees. Ecol Monogr 46:105–128

    Google Scholar 

  • Hölldobler B (1980) Canopy orientation: a new kind of orientation in ants. Science 210:86–88

    Google Scholar 

  • Lindauer M (1960) Time-compensated sun orientation in bees. Cold Spring Harbour Symp Quant Biol 25:371–377

    Google Scholar 

  • Lindauer M (1961) Communication among social bees. Harvard University Press, Cambridge (Massachusetts)

    Google Scholar 

  • Markl H (1974) Insect behavior: functions and mechanisms. In: Rockstein M (ed) Physiology of insecta, 2nd edn, vol 3. Academic Press, New York London

    Google Scholar 

  • Mobbs PG (1982) The brain of the honeybeeApis mellifera. I. The connections and spatial organisation of the mushroom bodies. Philos Trans R Soc Lond [Biol] 198:309–354

    Google Scholar 

  • Opfinger E (1931) Über die Orientierung der Biene an der Futterquelle. Z Vergl Physiol 15:431–487

    Google Scholar 

  • Ribbands CR (1949) The foraging methods of individual honey-bees. J Anim Ecol 18:47–66

    Google Scholar 

  • Rosse1 S, Wehner R (1982) The bee's map of the e-vector pattern in the sky. Proc Natl Acad Sci USA 79:4451–4455

    Google Scholar 

  • Tinbergen N (1932) Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.). Z Vergl Physiol 16:305–335

    Google Scholar 

  • Wehner R (1972) Dorsoventral asymmetry in the visual field of the bee,Apis mellifica. J Comp Physiol 77:256–277

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–617

    Google Scholar 

  • Wehner R, Flatt I (1977) Visual fixation in freely flying bees. Z Naturforsch [C] 32:469–471

    Google Scholar 

  • Wehner R, Räber F (1979) Visual spatial memory in desert ants,Cataglyphis bicolor (Hymenoptera: Formicidae). Experientia 35:1569–1571

    Google Scholar 

  • Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genusCataglyphis (Formicidae, Hymenoptera). J Comp Physiol 142:315–338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartwright, B.A., Collett, T.S. Landmark learning in bees. J. Comp. Physiol. 151, 521–543 (1983). https://doi.org/10.1007/BF00605469

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00605469

Keywords

Navigation