Skip to main content
Log in

Foveal fixation and tracking in the praying mantis

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Visually guided head and body movements of restrained and freely moving mantids (Tenodera australasiae) have been studied by means of closed circuit television. Interest was concentrated on the different roles of the fovea and the periphery of the eye in controlling visuo-motor behaviour.

  2. 2.

    The peripheral eye is mainly responsible for the detection of novel objects (preferably potential prey) and the generation of ballistic (open-loop) saccadic head movements (Fig. 2) which bring the target image to the fovea (Figs. 3, 4, 5, 6).

  3. 3.

    Measurements on monocular animals show that the fovea ofeach eye is encircled by a saccade sensitive periphery (Figs. 5, 6). In other words each eye is capable of measuring any retinal position of the target image in a coordinate system whose origin is at the fovea. Based on this finding, a hypothesis, which is outlined in Sect. IV.7, suggests that the binocular coordination during fixation, tracking and distance estimation is based on the comparison of angular coordinates extracted by each eye from the position vector of the target.

  4. 4.

    Moving targets which have been fixated are held in the fovea either by smooth or saccadic tracking eye movements. The degree to which either tracking strategy is employed depends mainly on the features of the background, but to some extent also on the velocity of the target.

  5. 5.

    Targets which move against a homogeneous background are tracked by smooth eye movements (Fig. 7). Low target angular velocities are closely matched by the eye velocity. At high target speeds the head lags increasingly behind the target and saccades are periodically required to reduce the position error relative to the fovea.

  6. 6.

    Smooth pursuit eye movements, evoked either by a single target (Fig. 7) or a disrupted background (Fig. 8), are affected primarily by the velocity of the retinal image. While the effects of target and background are similar in this respect, they differ in others. Small objects in the foreground, subtending an angle of only a few degrees on the retina, evoke strong pursuit responses only when they resemble typical prey and project onto the fovea (Fig. 9). On the other hand, the image stabilisation of the background is a stereotyped response that can be evoked whenever a large part of the background moves across the visual field (Fig. 10a). Moreover, responses caused by a moving target in the fovea, and movements of the background in the periphery, are not combined additively (Fig. 10b). The foveal tracking response is weighted more strongly, but because the target is usually small, compared with the background, competing background motion can suppress smooth foveal tracking almost completely.

  7. 7.

    This limitation imposed upon the smooth pursuit system by the presence of a disrupted background (either a stripe pattern in the experimental set-up or grass and other plants in a natural setting) is avoided by the adoption of a strategy of saccadic tracking (Figs. 11, 12, 15, 16). This also applies for the tracking which immediately precedes the catching of prey (Fig. 15). Therefore, the stabilisation of the target image in place on the fovea is not a prerequisite for a successful strike.

  8. 8.

    Up to target angular velocities of about 100 °/s, saccadic tracking is predictive, i.e. the saccades have adequate amplitudes to bring the fovea right on target at the instant the saccade is completed (Fig. 13). This implies that the saccadic system processes not only position information of the target but velocity information as well. It is suggested that this velocity information is provided by the smooth pursuit system. Saccadic tracking would then reflect interactions of two circuits, the velocity coding circuit which in the presence of a homogeneous background also generates smooth pursuit head movements, and the position coding circuit which in the absence of target movement is able to generate saccades on its own.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldus, K.: Experimentelle Untersuchungen über die Entfernungslokalisation der LibellenAeschna cyanea. Z. Vergl. Physiol.3, 475–505 (1926)

    Google Scholar 

  • Barmack, N.H.: Modification of eye movements by instantaneous changes in the velocity of visual targets. Vision Res.10, 1431–1441 (1970)

    Google Scholar 

  • Barrós-Pita, J.C., Maldonado, H.: A fovea in the praying mantis eye. II. Some morphological characteristics. Z. Vergl. Physiol.67, 79–92 (1970)

    Google Scholar 

  • Burkhardt, D., Darnhofer-Demar, B., Fischer, K.: Zum binokularen Entfernungssehen der Insekten. 1. Die Struktur des Sehraumes von Synsekten. J. Comp. Physiol.87, 165–188 (1973)

    Google Scholar 

  • Carpenter, R.H.S.: Movements of the eyes. London: Pion 1977

    Google Scholar 

  • Cloarec, A.: Estimation of hit distance byRanatra. Biol. Behav.4, 173–191 (1978)

    Google Scholar 

  • Collett, T.S.: Peering — a locust behaviour pattern for obtaining motion parallax information. J. Exp. Biol.76, 237–241 (1978)

    Google Scholar 

  • Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly,Syritta pipiens L. J. Comp. Physiol.99, 1–66 (1975)

    Google Scholar 

  • Collett, T.S., Land, M.F.: How hoverflies compute interception courses. J. Comp. Physiol.125, 191–204 (1978)

    Google Scholar 

  • Collewijn, H.: Optokinetic eye movements in the rabbit. Input-output relations. Vision Res.9, 117–132 (1969)

    Google Scholar 

  • Demoll, R.: Die Physiologie des Fazettenauges. Erg. Zool.2, 431–516 (1910)

    Google Scholar 

  • Ditchburn, R.W.: Eye movements and visual perception. Oxford: Clarendon Press 1973

    Google Scholar 

  • Duelli, P.: Movement detection in the posterolateral eyes of jumping spiders (Evarcha arcuata, Salticidae). J. Comp. Physiol.124, 15–26 (1978)

    Google Scholar 

  • Fermi, G., Reichardt, W.: Optomotorische Reaktionen der FliegeMusca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik2, 15–28 (1963)

    Google Scholar 

  • Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Photoreceptor optics. Snyder, A.W., Menzel, R. (eds.), pp. 98–125. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  • Friederichs, H.F.: Beiträge zur Morphologie und Physiologie der Sehorgane der Cicindelinen (Coleoptera). Z. Morph. Ökol. Tiere21, 1–172 (1931)

    Google Scholar 

  • Fuchs, A.F.: The saccadic system. In: The control of eye movements. Bach-y-Rita, P., Collins, C.C., Hyde, J.E. (eds.), pp. 343–362. New York, London: Academic Press 1971

    Google Scholar 

  • Fuchs, A.F., Luschei, E.S.: Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movements. J. Neurophysiol.33, 382–392 (1970)

    Google Scholar 

  • Heisenberg, M., Wolf, R.: On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster. J. Comp. Physiol.130, 113–130 (1979)

    Google Scholar 

  • Horridge, G.A., Duelli, P.: Anatomy of the regional differences in the eye of the mantisCiulfina. J. Exp. Biol.80, 165–190 (1979)

    Google Scholar 

  • Horridge, G.A., Sandeman, D.C.: Nervous control of optokinetic responses in the crabCarcinus. Proc. R. Soc. (London) Ser. B161, 216–246 (1964)

    Google Scholar 

  • Kien, J.: Sensory integration in the locust optomotor system. I. Behavioural analysis. Vision Res.14, 1245–1254 (1974a)

    Google Scholar 

  • Kien, J.: Sensory integration in the locust optomotor system. II. Direction selective neurons in the circumoesophageal connectives and the optic lobe. Vision Res.14, 1254–1268 (1974b)

    Google Scholar 

  • Kirmse, W., Lässig, P.: Strukturanalogie zwischen dem System der horizontalen Blickbewegungen der Augen beim Menschen und dem System des Blickbewegungen des Kopfes bei Insekten mit Fixationsreaktionen. Biol. Zentralbl.90, 175–193 (1971)

    Google Scholar 

  • Land, M.F.: Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J. Exp. Biol.51, 471–493 (1969)

    Google Scholar 

  • Land, M.F.: Orientation by jumping spiders in the absence of visual feedback. J. Exp. Biol.54, 119–139 (1971)

    Google Scholar 

  • Land, M.F.: Head movements of flies during visually guided flight. Nature243, 299–301 (1973)

    Google Scholar 

  • Land, M.F.: Similarities in the visual behaviour of arthropods and men. In: Handbook of psychobiology. Gazzaning, M., Blakemore, C. (eds.). New York: Academic Press 1975

    Google Scholar 

  • Land, M.F.: Visually guided movements in invertebrates. In: Function and formation of neural systems. Stent, G.S. (ed.), pp. 161–177. Berlin: Dahlem Konferenzen 1977

    Google Scholar 

  • Land, M.F., Collett, T.S.: Chasing behaviour of houseflies (Fannia canicularis). J. Comp. Physiol.89, 331–357 (1974)

    Google Scholar 

  • Lea, J.Y., Mueller, C.G.: Saccadic head movements in mantids. J. Comp. Physiol.114, 115–128 (1977)

    Google Scholar 

  • Levereault, P.: The morphology of the Carolina mantis. Sci. Bull.24, 203–259. The University of Kansas (1938)

    Google Scholar 

  • Levin, L., Maldonado, H.: A fovea in the praying mantis eye. III. The centering of the prey. Z. Vergl. Physiol.67, 93–101 (1970)

    Google Scholar 

  • Maldonado, H., Barrós-Pita, J.C.: A fovea in the praying mantis eye. I. Estimation of the catching distance. Z. Vergl. Physiol.67, 58–78 (1970)

    Google Scholar 

  • Maldonado, H., Levin, L.: Distance estimation and the monocular cleaning reflex in praying mantis. Z. Vergl. Physiol.56, 258–267 (1967)

    Google Scholar 

  • Maldonado, H., Rodriguez, E.: Depth perception in the praying mantis. Physiol. Behav.8 751–759 (1972)

    Google Scholar 

  • Maldonado, H., Benko, M., Isern, M.: Study of the role of the binocular vision in mantids to estimate long distances, using the deimatic reaction as experimental situation. Z. Vergl. Physiol.68, 72–83 (1970)

    Google Scholar 

  • McCann, G.D., Foster, S.F.: Binocular interactions of motion detection fibres in the optic lobes of flies. Kybernetik8, 193–203 (1971)

    Google Scholar 

  • Mittelstaedt, H.: Zur Analyse physiologischer Regelungssysteme. Verh. Dtsch. Zool. Ges.1951, 150–157 (1951)

    Google Scholar 

  • Mittelstaedt, H.: Prey capture in mantids. In: Recent advances in invertebrate physiology, Scheer, B.J. (ed.). University of Oregon (1957)

  • Oyster, C.W., Takahashi, E., Collewijn, H.: Direction-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. Vision Res.12, 183–193 (1972)

    Google Scholar 

  • Pichka, V.E.: Visual pathways in the protocerebrum of the droneflyEristalis tenax (in Russian). Zh. Evol. Biokhim. Fiziol. (USSR)12, 556–559 (1976)

    Google Scholar 

  • Pick, B.: Visual flicker induces orientation behaviour in the flyMusca. Z. Naturforsch.29c, 310–312 (1974)

    Google Scholar 

  • Poggio, T., Reichardt, W.: Visual control of orientation behaviour in the fly. II. Towards the underlying neural interactions. Q. Rev. Biophys.9, 377–438 (1976)

    Google Scholar 

  • Poggio, T. et al.: Visually guided movements (Group report). In: Function and formation of neural systems. Stent, G.S. (ed.), pp. 309–327. Berlin: Dahlem Konferenzen 1977

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. I. A quantitative analysis. Q. Rev. Biophys.9, 311–375 (1976)

    Google Scholar 

  • Rilling, S., Mittelstaedt, H., Roeder, K.D.: Prey recognition in the praying mantis. Behaviour14, 164–184 (1959)

    Google Scholar 

  • Robinson, D.A.: Models of the saccadic eye movement control system. Kybernetik14, 71–83 (1973)

    Google Scholar 

  • Robinson, D.A.: Eye movement control in vertebrates. Function andformation of neural systems. Stent, G.S. (ed.), pp. 179–195. Berlin: Dahlem Konferenzen 1977

    Google Scholar 

  • Rossel, S.: Regional differences in photoreceptor performance in the eye of the praying mantis. J. Comp. Physiol.131, 95–112 (1979)

    Google Scholar 

  • Sandeman, D.C.: A sensitive position measuring device for biological systems. Comp. Biochem. Physiol.24, 635–638 (1968)

    Google Scholar 

  • Sandeman, D.C., Erber, J., Kien, J.: Optokinetic eye movements in the crab. I. Eye torque. J. Comp. Physiol.101, 243–258 (1975a)

    Google Scholar 

  • Sandeman, D.C., Kien, J., Erber, J.: Optokinetic eye movements in the crab. II. Responses of Optokinetic interneurons. J. Comp. Physiol.101, 259–274 (1975b)

    Google Scholar 

  • Schiller, P.H.: The discharge characteristics of single units in the oculomotor and abducens nuclei of the unanesthetized monkey. Exp. Brain Res.10, 347–362 (1970)

    Google Scholar 

  • Stark, L.: The control system for versional eye movements. In: The control of eye movements. Bach-y-Rita, P., Collins, C.C., Hyde, J.E. (eds.), pp. 363–428. New York, London: Academic Press 1971

    Google Scholar 

  • Virsik, R.P., Reichardt, W.: Detection and tracking of moving objects by the flyMusca domestica. Biol. Cybern.23, 83–98 (1976)

    Google Scholar 

  • Wallace, G.K.: Visual scanning in the desert locustSchistocerca gregaria Forskål. J. Exp. Biol.36, 512–525 (1959)

    Google Scholar 

  • Yarbus, A.L.: Eye movements and vision. New York: Plenum Press 1967

    Google Scholar 

  • Zaretsky, M., Rowell, C.H.F.: Saccadic suppression by corollary discharge in the locust. Nature280, 583–585 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to thank Drs. S.B. Laughlin, M.V. Srinivasan, E.E. Ball and Prof. G.A. Horridge for their critical comments on the manuscript. I am also grateful to Dr. D.C. Sandeman for stimulating discussions throughout the course of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossel, S. Foveal fixation and tracking in the praying mantis. J. Comp. Physiol. 139, 307–331 (1980). https://doi.org/10.1007/BF00610462

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610462

Keywords

Navigation