Skip to main content
Log in

Alloy depletion profiles resulting from the preferential removal of the less noble metal during alloy oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The assumptions involved in Wagner's original treatment of alloy depletion profiles are examined and found to be acceptable for many situations. Finite difference analyses do not result in profiles which are significantly different from those obtained by the much simpler analytical solution once steady-state parabolic growth is established. Consequently an analytical solution is preferred and its combination with the classical Wagner expression for scale growth leads to a unified description of alloy oxidation when only the least noble metal is oxidized. The description is tested for an Fe-27.4wt.% Cr alloy oxidized at 1273°K and agreement between theoretical and experimental results is satisfactory. Alternative treatments of alloy oxidation which require that there be no recession of the alloy-scale interface are discussed and it is concluded that this assumption is unnecessarily restrictive in many cases. Suggestions that the oxidation of austenitic steels is controlled by diffusion in the alloy and that an interfacial transfer step is of importance in determining the oxidation rate in some cases are shown to be based on invalid assumptions. An analytical solution to the diffusion equation is developed for the case when a phase change occurs in the alloy because of less noble metal depletion and an expression is also presented for the profile developed in the limiting case where depletion is determined by scale evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Whittle,Oxid. Met. 4, 171 (1972).

    Google Scholar 

  2. C. Wagner,J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  3. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood,Acta Metall. 15, 1421 (1967).

    Google Scholar 

  4. G. L. Wulf, M. B. McGirr, and G. R. Wallwork,Corros. Sci. 9, 739 (1969).

    Google Scholar 

  5. R. Hales, C.E.G.B. Report No. RD/B/N3727 (1976).

  6. R. Hales and A. C. Hill,Corros. Sci. 12, 843 (1972).

    Google Scholar 

  7. R. Hales,Oxid. Met. 10, 29 (1976).

    Google Scholar 

  8. H. E. Evans, D. A. Hilton, and R. A. Holm,Oxid. Met. 10, 149 (1976).

    Google Scholar 

  9. R. Hales, A. F. Smith, and J. C. Killeen, Proc. BNES Conf. Steels in CO2, Reading, England (1974), p. 311.

  10. J. C. Killeen, A. F. Smith, and R. K. Wild,Corros. Sci. 16, 551 (1976).

    Google Scholar 

  11. H. Y. Ku,J. Appl. Phys. 35, 3391 (1964).

    Google Scholar 

  12. D. P. Whittle,Corros. Sci. 12, 869 (1972).

    Google Scholar 

  13. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully,Acta Metall. 15, 1747 (1967).

    Google Scholar 

  14. T. Ericsson,Oxid. Met. 2, 401 (1970).

    Google Scholar 

  15. G. B. Gibbs and R. Hales,Corros. Sci. 17, 487 (1977).

    Google Scholar 

  16. G. B. Gibbs, Private communication to D. P. Whittle, June (1977).

  17. C. Wagner,Atom Movements (American Society for Metals, Cleveland, 1951), p. 153.

    Google Scholar 

  18. B. D. Bastow, D. P. Whittle, and G. C. Wood,Proc. Roy. Soc. A 356, 177 (1977).

    Google Scholar 

  19. P. J. Alberry and C. W. Haworth,Met. Sci. J. 8, 407 (1974).

    Google Scholar 

  20. L. Brewer,Chem. Rev. 52, 1 (1953).

    Google Scholar 

  21. P. J. Harrop,J. Mater. Sci. 3, 206 (1968).

    Google Scholar 

  22. G. C. Wood, I. G. Wright, T. Hodgkiess, and D. P. Whittle,Werkst. Korros. (Mannheim) 21, 900 (1970).

    Google Scholar 

  23. G. C. Wood and D. P. Whittle,Corros. Sci. 7, 763 (1967).

    Google Scholar 

  24. G. C. Wood and D. P. Whittle,J. Electrochem. Soc. 115, 126 (1968).

    Google Scholar 

  25. D. P. Whittle and G. C. Wood,J. Electrochem. Soc. 115, 133 (1968).

    Google Scholar 

  26. G. C. Wood, and D. P. Whittle,Corros. Sci. 4, 293 (1964).

    Google Scholar 

  27. D. Caplan,Corros. Sci. 6, 509 (1966).

    Google Scholar 

  28. W. B. A. Sharp,Corros. Sci. 10, 283 (1970).

    Google Scholar 

  29. J. Webber,Corros. Sci. 16, 499 (1976).

    Google Scholar 

  30. C. S. Tedmon,J. Electrochem. Soc. 114, 788 (1967).

    Google Scholar 

  31. E. J. Feten,J. Electrochem. Soc. 108, 490 (1961).

    Google Scholar 

  32. Y. Nakamura,Metall. Trans. 5, 909 (1974).

    Google Scholar 

  33. E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 109, 560 (1962).

    Google Scholar 

  34. D. Cismaru,Corros. Sci. 5, 47 (1965).

    Google Scholar 

  35. J. M. Francis and W. H. Whitlow,J. Iron Steel Inst. (London) 204, 355 (1966).

    Google Scholar 

  36. R. K. Wild,Corros. Sci. 17, 87 (1977).

    Google Scholar 

  37. S. K. Rhee and A. R. Spencer,Metall. Trans. 1, 2021 (1970).

    Google Scholar 

  38. D. Caplan and G. I. Sproule,Oxid. Met. 9, 459 (1975).

    Google Scholar 

  39. K. Abbott and C. W. Haworth,Acta Metall. 21, 951 (1973).

    Google Scholar 

  40. J. Crank,Mathematics of Diffusion (Clarendon Press Oxford, 1964), p. 34.

    Google Scholar 

  41. D. Mortimer and M. L. Post,Corros. Sci. 8, 499 (1968).

    Google Scholar 

  42. G. J. Yurek, J. V. Cathcart, and R. E. Pawel,Oxid. Met. 10, 255 (1976).

    Google Scholar 

  43. D. P. Whittle, D. J. Young, and W. W. Smeltzer,J. Electrochem. Soc. 123, 1073 (1976).

    Google Scholar 

  44. H. E. Evans, R. Hales, D. A. Hilton, R. A. Holm, G. Knowles, and R. J. Pearce, Proc. BNES Conf. Corros. Steels in CO2, Reading, England (1974), p. 369.

  45. H. E. Evans, D. A. Hilton, and R. A. Holm,Oxid. Met. 11, 1 (1977).

    Google Scholar 

  46. J. Stringer,Oxid. Met. 5, 49 (1972).

    Google Scholar 

  47. M. S. Seltzer,Metall. Trans. 3, 3259 (1972).

    Google Scholar 

  48. B. Chattopadhyay and G. C. Wood,Oxid. Met. 2, 373 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastow, B.D., Whittle, D.P. & Wood, G.C. Alloy depletion profiles resulting from the preferential removal of the less noble metal during alloy oxidation. Oxid Met 12, 413–438 (1978). https://doi.org/10.1007/BF00612088

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612088

Key words

Navigation