Skip to main content
Log in

Inhibition and nickel electrocrystallization

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocrystallization of Ni is known to be a highly inhibited process. This work gives some conclusions about the nature of the major inhibiting species. All of these species are formed in the catholyte because of the hydrogen codeposition. Depending on plating conditions, mainly pH and current density of metallic deposition, we observe a predominancy of a definite inhibitor which selectively promotes one mode of growth and leads to a deposit exhibiting definite structural properties. A careful structural investigation of Ni deposits obtained from a Watts solution, thanks to both X-ray diffractometry and electron-microscope techniques, leads us to distinguish a free mode of growth, which is characterized by [100] oriented deposits, from several inhibited modes such as 〈110〉, [210], 〈211〉 and 〈111〉. The two latter are stabilized by Ni(OH)2 while the two former are respectively due to atomic and molecular forms of adsorbed hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fischer, ‘Elektrolytische Abscheidung und Elektrokristallisation von Metallen’, Springer, Berlin (1954).

    Google Scholar 

  2. Idem, Electrodep. Surf. Treat. 1 (1973) 239.

    Google Scholar 

  3. Idem, ibid, Electrodep. Surf. Treat.,1 (1973) 319.

    Google Scholar 

  4. R. Piontelli and G. Serravalle.Tram. Inst. Metal Finishing 34 (1957) 293.

    Google Scholar 

  5. M. Froment and A. Ostrowiecki,Métaux Corrosion Ind. 487 (1966) 83.

    Google Scholar 

  6. M. Froment, G. Maurin and J. Thevenin,Comptes Rendus Acad. Sci. Paris 264C (1967) 1520.

    Google Scholar 

  7. J. Amblard, thesis, Paris (1976).

  8. J. Amblard, M. Froment and G. Maurin,Electrodep. Surf. Treat. 2 (1974) 205.

    Google Scholar 

  9. J. Amblard, M. Froment and N. Spyrellis,Surf. Technol. 5 (1977) 205.

    Google Scholar 

  10. G. Maurin and M. Froment,Métaux Corrosion Ind. 487 (1966) 103.

    Google Scholar 

  11. M. Froment and G. Maurin,J. Microscopie 7 (1968) 39.

    Google Scholar 

  12. G. Maurin,Oberfläche-Surface 11 (1970) 297 309.

    Google Scholar 

  13. Idem, ibid,12 (1971) 8, 24, 47, 54.

    Google Scholar 

  14. I. Epelboin, M. Froment and G. Maurin,Plating 56 (1969) 1356.

    Google Scholar 

  15. J. Amblard, M. Froment and S. Vitkova, Communication at the28th ISE Meeting Druzhba near Varna (1977) p. 427.

  16. I. Epelboin, M. Froment and G. Maurin,ibid p. 371.

  17. J. Amblard, Th. Costavaras, A. Hugot-Le Goff and N. Spyrellis,Oberfläche-Surface 18 (1977) 1.

    Google Scholar 

  18. R. Wiart,ibid,9 (1968) 213, 241, 273.

    Google Scholar 

  19. H. Brown,Plating 55 (1968) 1047.

    Google Scholar 

  20. I. Dubsky and P. Kozak,Metalloberfläche 24 (1970) 423.

    Google Scholar 

  21. R. J. Kendrick,Trans. Inst. Met. Finishing 40 (1963) 19.

    Google Scholar 

  22. H. Brown, Comm. atInterfinish Bâle (1972) p. 114.

  23. M. Froment, G. Maurin and J. Thevenin,J. Microscopie 8 (1969) 521.

    Google Scholar 

  24. A. Knödler,Metalloberfläche 20 (1966) 52.

    Google Scholar 

  25. M. Froment,J. Microscopie 3 (1964) 61.

    Google Scholar 

  26. J. Amblard and M. Froment, Communication at the12th Faraday Symposium Southampton (1977) p. 136.

  27. N. A. Pangarov,J. Electroanalyt. Chem. 9 (1965) 70.

    Google Scholar 

  28. J. Thevenin,J. Microsc. Spectr. Electron 1 (1976) 7.

    Google Scholar 

  29. A. K. N. Reddy and S. R. Ragagopalan,J. Electroanalyt. Chem. 6 (1963) 141, 153, 159.

    Google Scholar 

  30. R. K. Dorsch,ibid,21 (1969) 495.

    Google Scholar 

  31. I. Epelboin, P. Morel and H. Takenouti,J. Electrochem. Soc. 118 (1971) 1282.

    Google Scholar 

  32. A. G. Ives, J. W. Edington and G. B. Rothwell,Electrochim. Acta 15 (1970) 1797.

    Google Scholar 

  33. S. I. Berezina, L. V. Burnasheva, A. N. Gil'manov, I. Kh. Muzeev and R. M. Sageeva,Elektrokhimiya 10 (1974) 948.

    Google Scholar 

  34. M. Pourbaix, MAtlas d'équilibres électrochimiques à 25° C', Gauthier Villars, Paris (1963) p. 333.

    Google Scholar 

  35. F. Denise and H. Leidheiser Jr.,J. Electrochem. Soc. 100 (1953) 490.

    Google Scholar 

  36. D. J. Evans,Trans. Faraday Soc. 54 (1958) 1086.

    Google Scholar 

  37. B. Rivolta, L. Peraldo Bicelli and G. Razzini,J. Phys. D: Appl. Phys. 8 (1975) 2025.

    Google Scholar 

  38. M. Froment, G. Maurin and J. Thevenin,Comptes Rendus Acad. Sci. Paris 269C (1969) 1367.

    Google Scholar 

  39. J. Matulis and R. Slizys,Electrochim. Acta 9 (1964) 1177.

    Google Scholar 

  40. I. Epelboin and R. Wiart,J. Electrochem. Soc. 118 (1971) 1577.

    Google Scholar 

  41. H. Leidheiser Jr. and A. T. Gwathmey,ibid,98 (1951) 225.

    Google Scholar 

  42. K. R. Lawless,Phys. Thin Films 4 (1967) 191.

    Google Scholar 

  43. S. K. Verma and H. Wilman,J. Phys. D: Appl. Phys. 4 (1971) 1167.

    Google Scholar 

  44. J. Thevenin, thesis, Paris (1974).

  45. B. Le Gorrec and J. Guitton,Comptes Rendus Acad. Sci. Paris 272C (1971) 1784, 2031.

    Google Scholar 

  46. J. Bressan, I. Epelboin, R. Wiart, Communication of the Department of Chemistry, Acad. Sci. Bulgaria, Special Issue in honour of Professor Kaischew (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amblard, J., Epelboin, I., Froment, M. et al. Inhibition and nickel electrocrystallization. J Appl Electrochem 9, 233–242 (1979). https://doi.org/10.1007/BF00616093

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616093

Keywords

Navigation