Skip to main content
Log in

Stress relaxation: Experiment, theory, and computer simulation

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

Experimental evidence on stress relaxation is analyzed first for a wide variety of classes of materials: metals and their alloys, synthetic and natural polymers, glasses and frozen non-polymeric organic liquids. Common features of curves σ(t) of relaxation of stress a as a function of time t are discussed, and the importance of the internal stress σi(∞) noted. Theoretical approaches are then reviewed, with particular attention to the cooperative model and its modifications; that model corresponds well to the experimental results. Some simulation results obtained with the method of molecular dynamics are reported for ideal metal lattices, metal lattices with defects, and for polymeric systems. In agreement with both experiments and the cooperative theory, the simulated σ(log t) curves exhibit three regions: initial, nearly horizontal, starting atσ 0; central, descending approximately linearly; and final, corresponding toσ i. In agreement with the theory, the slope of the simulated central part is proportional to the initial effective stressσ 0*=σ 0σ i. The time range taken by the central part is strongly dependent on the defect concentration: the lower the defect concentration, the shorter the range. Imposition in the beginning of a high strain ɛ destroys largely the resistance of a material to deformation, resulting in low values of the internal stressσ i. On the joint basis of experimental, theoretical, and numerical results, we explain the mechanism of stress relaxation in terms of deformations occuring in the immediate environment of the defects. Simulations show several common features in the behavior of metals and polymers. Apart from the defect concentration, the amount of free volumev f is also important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. H. Kenner, in: Failure of Plastics, W. Brostow and R. D. Corneliussen (eds.), Hanser Publishers, Mu nich-Vienna-New York (1986), Chap. 2.

    Google Scholar 

  2. J. Kubát, Nature,204, 378 (1965).

    Google Scholar 

  3. J. Kubát and L.-Å. Nilsson, Mater. Sci. Eng.,52, 223 (1982).

    Google Scholar 

  4. J. C. M. Li, Can. J. Phys.,45, 493 (1967).

    Google Scholar 

  5. J. Kubat and L. Rigdahl, in: Failure of Plastics, W. Brostow and R. D. Corneliussen (eds.), Hanser Publishers, New York (1986), Chap. 4.

    Google Scholar 

  6. L. Bohlin and J. Kubát, Solid State Commun.,20, 211 (1976).

    Google Scholar 

  7. Ch. Högfors, J. Kubát, and M. Rigdahl, Phys. Status Solidi B,107, 147 (1981).

    Google Scholar 

  8. J. Kubát, L.-Å. Nilsson, and W. Rychwalski, Res Mechanica,5, 309 (1982).

    Google Scholar 

  9. J. Kubát, Phys. Status Solidi B, 111, 599 (1982).

    Google Scholar 

  10. C. Högfors, J. Kubát, and M. Rigdahl, Rheol. Acta,24, 250 (1985).

    Google Scholar 

  11. W. Brostow and J. Kubát, Phys. Rev. B,47, 7659 (1993).

    Google Scholar 

  12. W. Brostow, J.-P. Dussault, and B. L. Fox, J. Comput. Phys.,59, 81 (1978).

    Google Scholar 

  13. F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1969), Chap. 12.

    Google Scholar 

  14. W. Brostow, in: Failure of Plastics, W. Brostow and R. D. Corneliussen (eds.), Hanser Publishers, Munich-Vienna-New York (1986), Chap. 10.

    Google Scholar 

  15. W. Brostow, Makromol. Chem. Symp.,41, 119 (1991).

    Google Scholar 

  16. W. Brostow, J. Kubát, and M. J. Kubát, Mater. Res. Soc. Symp.,321, 99 (1994).

    Google Scholar 

  17. S. Blonski, W. Brostow, and J. Kubát, Phys. Rev. B,49, 6494 (1994).

    Google Scholar 

  18. K. Binder, in: The Monte Carlo Method in Condensed Matter Physics, K. Binder (ed.), Springer, Berlin (1991), Chap. 1.

    Google Scholar 

  19. S. Blonski and W. Brostow, J. Chem. Phys.,95, 2890 (1991).

    Google Scholar 

  20. V. Mom, J. Comput. Phys., 2, 446 (1981).

    Google Scholar 

  21. W. Brostow, Science of Materials, Wiley, New York (1979); Robert E. Krieger Publ., Malabar, FL (1985); W. Brostow, Einstieg in die moderne Werkstoffwissenschaft, Carl Hanser Verlag, München-Wien (1985).

    Google Scholar 

  22. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and R. J. Haak, J. Chem. Phys.,81, 3684 (1984).

    Google Scholar 

  23. D. Brown and J. H. R. Clarke, Macromolecules,24, 2075 (1991).

    Google Scholar 

  24. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford (1987).

    Google Scholar 

  25. A. J. C. Ladd, in: Computer Modeling of Fluids, Polymers and Solids, C. R. A. Catlow, S. C. Parker, and M. P. Alien (eds.), Kluwer Publ., Dordrecht (1990).

    Google Scholar 

  26. F. F. Abraham, Phys. Rev. Letters,44, 463 (1980).

    Google Scholar 

  27. F. F. Abraham, Phys. Rep.,80, 339 (1981).

    Google Scholar 

  28. S. Mrowec, Defects and Diffusion in Solids, Elsevier, Amsterdam (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 5, pp. 591–606, September–Ocotober, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brostow, W., Kubát, J. & Kubát, M.J. Stress relaxation: Experiment, theory, and computer simulation. Mech Compos Mater 31, 432–445 (1996). https://doi.org/10.1007/BF00617126

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617126

Keywords

Navigation