Skip to main content
Log in

Electrical properties and defect model of tin-doped indium oxide layers

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tin-doped In2O3 layers were prepared by the spray technique with doping concentrationsc Sn between 1 and 20 at. % and annealed at 500 °C in gas atmospheres of varying oxygen partial pressures. The room-temperature electrical properties were measured. Maximum carrier concentrationsN=1.5×1021cm−3 and minimum resistivities ϱ=1.3×10−4 Ω cm are obtained if the layers are doped withc Sn≈9 at. % and annealed in an atmosphere of oxygen partial pressurep O2 ⋦10−20 bar. At fixed doping concentration, the carrier mobility increases with decreasing oxygen pressure. The maximum obtainable mobility can be described in terms of electron scattering by ionized impurities. From an analysis of the carrier concentration and additional precision measurements of the lattice constants and film thicknesses, a defect model for In2O3:Sn is developed. This comprises two kinds of interstitial oxygen, one of which is loosely bound to tin, the other forming a strongly bound Sn2O4 complex. At low doping concentrationc Sn≲4 at. % the carrier concentration is governed by the loosely bound tin-oxygen defects which decompose if the oxygen partial pressure is low. The carrier concentration follows from a relationN=K 1 ·p O2 −1/8 ·(3 ×1010 × cSnN)1/4 with an equilibrium constantK 1=1.4×1015 cm−9/4bar1/8, determined from our measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B.Frazer: Proc. IEEE61, 1013–1018 (1973)

    Google Scholar 

  2. R.R.Mehta, S.F.Vogel: J. Electochem. Soc.119, 752–756 (1972)

    Google Scholar 

  3. J.B.DuBow, D.E.Burk: Appl. Phys. Lett.29, 494–496 (1976)

    Google Scholar 

  4. H.J.J. van Boort, R.Groth: Philips Techn. Rev.29, 17–18 (1968)

    Google Scholar 

  5. J.C.C.Fan, F.J.Bachner: Appl. Opt.15, 1012–1017 (1976)

    Google Scholar 

  6. S.Yoshida: Appl. Opt.17, 145–150 (1978)

    Google Scholar 

  7. H.K östlin: Philips Techn. Rev.34, 242–243 (1974)

    Google Scholar 

  8. J.A.Thornton, V.L.Hedgcoth: J. Vac. Sci. Technol.13, 117–121 (1976)

    Google Scholar 

  9. H.W.Lehmann, R.Widmer: Thin Solid Films27, 359–368 (1975)

    Google Scholar 

  10. D.B.Frazer, H.D.Cook: J. Electrochem. Soc.119, 1368–1374 (1972)

    Google Scholar 

  11. J.C.C.Fan, F.J.Bachner: J. Electrochem. Soc.122, 1719–1725 (1975)

    Google Scholar 

  12. P.Nath, R.F.Bunshah: Thin Solid Films69, 63–68 (1980)

    Google Scholar 

  13. J.Kane, H.P.Schweizer, W.Kern: Thin Solid Films29, 155–163 (1975)

    Google Scholar 

  14. D.K.Ranadive, F.T.J.Smith, R.P.Khosla: Proc. 6th Intern. Conf. Chemical Vapor Deposition 1977 (The Electrochem. Soc. 1978) pp. 448–460

  15. R.Groth: Phys. stat. sol.14, 69–75 (1966)

    Google Scholar 

  16. A.Raza, O.P.Agnihotri, B.K.Gupta: J.Phys. D (Appl. Phys.)10, 1871–1876 (1977)

    Google Scholar 

  17. J.C.Manifacier, M.de Murcia, U.P.Fillard: Mater. Res. Bull.10, 1215–1220 (1975)

    Google Scholar 

  18. J.L.Vossen: RCA Rev.32, 289–296 (1971)

    Google Scholar 

  19. J.M.Pankratz: J. Electron. Mater.1, 1–9 (1972)

    Google Scholar 

  20. W.G.Haines, R.H.Bube: J. Appl. Phys.49, 304–307 (1978)

    Google Scholar 

  21. G.Frank, E.Kauer, H.Köstlin: Thin Solid Films77, 107–117 (1981)

    Google Scholar 

  22. O.P.Agnihotri, A.K.Sharma, B.K.Gupta, R.Thangaraj: J. Phys. D (Appl. Phys.)11, 643–647 (1978)

    Google Scholar 

  23. H.Hoffmann, J.Pickl, M.Schmidt: Appl. Phys.16, 239–246 (1978)

    Google Scholar 

  24. V.M.Vainshtein, V.I.Fistul: Sov. Phys. Semicond.4, 1278–1281 (1971)

    Google Scholar 

  25. J.L. van der Pauw: Philips Res. Rep.13, 1–9 (1958)

    Google Scholar 

  26. R.Clanget: Appl. Phys.2, 247–256 (1973)

    Google Scholar 

  27. G.Frank, H.Köstlin, A.Rabenau: Phys. stat. sol. (a)52, 231–238 (1979)

    Google Scholar 

  28. J.H.W. de Wit: J. Solid State Chem.20, 143–148 (1977)

    Google Scholar 

  29. J.H.W. de Wit, G. van Unen, M.Lahey: J. Phys. Chem. Solids38, 819–824 (1977)

    Google Scholar 

  30. M.Hecq, A.Dubois, J. van Cakenberghe: Thin Solid Films18, 117–125 (1973)

    Google Scholar 

  31. H.Köstlin, R.Jost, W.Lems: Phys. stat. sol. (a)29, 87–93 (1975)

    Google Scholar 

  32. E.C.Subbarao, P.H.Sutter, J.Hrizo: J. Am. Ceram. Soc.48, 443–446 (1965)

    Google Scholar 

  33. D.J.McDowell, R.W.Scheidecker, M.F.Berard: J. Solid State Chem.23, 357–360 (1978)

    Google Scholar 

  34. J.C.C.Fan, J.B.Goodenough: J. Appl. Phys.48, 3524–3531 (1977)

    Google Scholar 

  35. F.A.Kröger:The Chemistry of Imperfect Crystals, Vol. 2, (North-Holland, Amsterdam 1974) pp. 690–694

    Google Scholar 

  36. D.Chatterji, R.W.Vest: J. Am. Ceram. Soc.55, 575–578 (1972)

    Google Scholar 

  37. R.L.Weiher: J. Appl. Phys.33, 2834–2839 (1962)

    Google Scholar 

  38. J.E.Morris, M.I.Ridge, C.A.Bishop, R.A.Howson: J. Appl. Phys.51, 1847–1849 (1980)

    Google Scholar 

  39. V.F.Korzo, V.N.Chernyaev: Phys. stat. sol. (a)20, 695–705 (1973)

    Google Scholar 

  40. H.K.Müller: Phys. stat. sol.27, 723–731, 733–740 (1968)

    Google Scholar 

  41. R.B.Dingle: Philos. Mag.46, 831–840 (1955)

    Google Scholar 

  42. C.Erginsoy: Phys. Rev.79, 1013–1014 (1950)

    Google Scholar 

  43. H.Koch: Phys. stat. sol.3, 1059–1071, 1619–1628 (1963);7, 263–275 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, G., Köstlin, H. Electrical properties and defect model of tin-doped indium oxide layers. Appl. Phys. A 27, 197–206 (1982). https://doi.org/10.1007/BF00619080

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619080

PACS

Navigation